These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30298571)

  • 1. W361R mutation in GaaR, the regulator of D-galacturonic acid-responsive genes, leads to constitutive production of pectinases in Aspergillus niger.
    Alazi E; Niu J; Otto SB; Arentshorst M; Pham TTM; Tsang A; Ram AFJ
    Microbiologyopen; 2019 May; 8(5):e00732. PubMed ID: 30298571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inducer-independent production of pectinases in Aspergillus niger by overexpression of the D-galacturonic acid-responsive transcription factor gaaR.
    Alazi E; Knetsch T; Di Falco M; Reid ID; Arentshorst M; Visser J; Tsang A; Ram AFJ
    Appl Microbiol Biotechnol; 2018 Mar; 102(6):2723-2736. PubMed ID: 29368217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The chimeric GaaR-XlnR transcription factor induces pectinolytic activities in the presence of D-xylose in Aspergillus niger.
    Kun RS; Garrigues S; Di Falco M; Tsang A; de Vries RP
    Appl Microbiol Biotechnol; 2021 Jul; 105(13):5553-5564. PubMed ID: 34236481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Evolutionarily Conserved Transcriptional Activator-Repressor Module Controls Expression of Genes for D-Galacturonic Acid Utilization in Aspergillus niger.
    Niu J; Alazi E; Reid ID; Arentshorst M; Punt PJ; Visser J; Tsang A; Ram AF
    Genetics; 2017 Jan; 205(1):169-183. PubMed ID: 28049705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The transcriptional activator GaaR of Aspergillus niger is required for release and utilization of d-galacturonic acid from pectin.
    Alazi E; Niu J; Kowalczyk JE; Peng M; Aguilar Pontes MV; van Kan JA; Visser J; de Vries RP; Ram AF
    FEBS Lett; 2016 Jun; 590(12):1804-15. PubMed ID: 27174630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9 facilitates rapid generation of constitutive forms of transcription factors in Aspergillus niger through specific on-site genomic mutations resulting in increased saccharification of plant biomass.
    Kun RS; Meng J; Salazar-Cerezo S; Mäkelä MR; de Vries RP; Garrigues S
    Enzyme Microb Technol; 2020 May; 136():109508. PubMed ID: 32331715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinatorial control of gene expression in Aspergillus niger grown on sugar beet pectin.
    Kowalczyk JE; Lubbers RJM; Peng M; Battaglia E; Visser J; de Vries RP
    Sci Rep; 2017 Sep; 7(1):12356. PubMed ID: 28955038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pathway intermediate 2-keto-3-deoxy-L-galactonate mediates the induction of genes involved in D-galacturonic acid utilization in Aspergillus niger.
    Alazi E; Khosravi C; Homan TG; du Pré S; Arentshorst M; Di Falco M; Pham TTM; Peng M; Aguilar-Pontes MV; Visser J; Tsang A; de Vries RP; Ram AFJ
    FEBS Lett; 2017 May; 591(10):1408-1418. PubMed ID: 28417461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations in AraR leading to constitutive expression of arabinolytic genes in Aspergillus niger under derepressing conditions [corrected].
    Reijngoud J; Deseke M; Halbesma ETM; Alazi E; Arentshorst M; Punt PJ; Ram AFJ
    Appl Microbiol Biotechnol; 2019 May; 103(10):4125-4136. PubMed ID: 30963207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transcription factor PDR-1 is a multi-functional regulator and key component of pectin deconstruction and catabolism in
    Thieme N; Wu VW; Dietschmann A; Salamov AA; Wang M; Johnson J; Singan VR; Grigoriev IV; Glass NL; Somerville CR; Benz JP
    Biotechnol Biofuels; 2017; 10():149. PubMed ID: 28616073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interaction of induction and repression mechanisms in the regulation of galacturonic acid-induced genes in Aspergillus niger.
    Niu J; Homan TG; Arentshorst M; de Vries RP; Visser J; Ram AF
    Fungal Genet Biol; 2015 Sep; 82():32-42. PubMed ID: 26127014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aspergillus niger RhaR, a regulator involved in L-rhamnose release and catabolism.
    Gruben BS; Zhou M; Wiebenga A; Ballering J; Overkamp KM; Punt PJ; de Vries RP
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5531-40. PubMed ID: 24682478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of the fungal D-galacturonate pathway for L-ascorbic acid production.
    Kuivanen J; Penttilä M; Richard P
    Microb Cell Fact; 2015 Jan; 14():2. PubMed ID: 25566698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioconversion of D-galacturonate to keto-deoxy-L-galactonate (3-deoxy-L-threo-hex-2-ulosonate) using filamentous fungi.
    Wiebe MG; Mojzita D; Hilditch S; Ruohonen L; Penttilä M
    BMC Biotechnol; 2010 Aug; 10():63. PubMed ID: 20796274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering filamentous fungi for conversion of D-galacturonic acid to L-galactonic acid.
    Kuivanen J; Mojzita D; Wang Y; Hilditch S; Penttilä M; Richard P; Wiebe MG
    Appl Environ Microbiol; 2012 Dec; 78(24):8676-83. PubMed ID: 23042175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering Aspergillus niger for galactaric acid production: elimination of galactaric acid catabolism by using RNA sequencing and CRISPR/Cas9.
    Kuivanen J; Wang YJ; Richard P
    Microb Cell Fact; 2016 Dec; 15(1):210. PubMed ID: 27955649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative evaluation of Aspergillus niger strains for endogenous pectin-depolymerization capacity and suitability for D-galacturonic acid production.
    Schäfer D; Schmitz K; Weuster-Botz D; Benz JP
    Bioprocess Biosyst Eng; 2020 Sep; 43(9):1549-1560. PubMed ID: 32328731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of Aspergillus niger transcription factors AraR and XlnR in the gene expression during growth in D-xylose, L-arabinose and steam-exploded sugarcane bagasse.
    de Souza WR; Maitan-Alfenas GP; de Gouvêa PF; Brown NA; Savoldi M; Battaglia E; Goldman MH; de Vries RP; Goldman GH
    Fungal Genet Biol; 2013 Nov; 60():29-45. PubMed ID: 23892063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome analysis of Aspergillus niger xlnR and xkiA mutants grown on corn Stover and soybean hulls reveals a highly complex regulatory network.
    Khosravi C; Kowalczyk JE; Chroumpi T; Battaglia E; Aguilar Pontes MV; Peng M; Wiebenga A; Ng V; Lipzen A; He G; Bauer D; Grigoriev IV; de Vries RP
    BMC Genomics; 2019 Nov; 20(1):853. PubMed ID: 31726994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the Aspergillus niger prtT, a unique regulator of extracellular protease encoding genes.
    Punt PJ; Schuren FH; Lehmbeck J; Christensen T; Hjort C; van den Hondel CA
    Fungal Genet Biol; 2008 Dec; 45(12):1591-9. PubMed ID: 18930158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.