These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30298611)

  • 1. Cluster capture-recapture to account for identification uncertainty on aerial surveys of animal populations.
    Stevenson BC; Borchers DL; Fewster RM
    Biometrics; 2019 Mar; 75(1):326-336. PubMed ID: 30298611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A latent capture history model for digital aerial surveys.
    Borchers DL; Nightingale P; Stevenson BC; Fewster RM
    Biometrics; 2022 Mar; 78(1):274-285. PubMed ID: 33216962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pairing field methods to improve inference in wildlife surveys while accommodating detection covariance.
    Clare J; McKinney ST; DePue JE; Loftin CS
    Ecol Appl; 2017 Oct; 27(7):2031-2047. PubMed ID: 28644579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unmanned aerial vehicles for surveying marine fauna: assessing detection probability.
    Hodgson A; Peel D; Kelly N
    Ecol Appl; 2017 Jun; 27(4):1253-1267. PubMed ID: 28178755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abundance estimation for line transect sampling: A comparison of distance sampling and spatial capture-recapture models.
    Crum NJ; Neyman LC; Gowan TA
    PLoS One; 2021; 16(5):e0252231. PubMed ID: 34048456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An open spatial capture-recapture model for estimating density, movement, and population dynamics from line-transect surveys.
    Gowan TA; Crum NJ; Roberts JJ
    Ecol Evol; 2021 Jun; 11(12):7354-7365. PubMed ID: 34188818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double-observer line transect surveys with Markov-modulated Poisson process models for animal availability.
    Borchers DL; Langrock R
    Biometrics; 2015 Dec; 71(4):1060-9. PubMed ID: 26134283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. That's not the Mona Lisa! How to interpret spatial capture-recapture density surface estimates.
    Durbach I; Chopara R; Borchers DL; Phillip R; Sharma K; Stevenson BC
    Biometrics; 2024 Jan; 80(1):. PubMed ID: 38364802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An empirical evaluation of camera trapping and spatially explicit capture-recapture models for estimating chimpanzee density.
    Després-Einspenner ML; Howe EJ; Drapeau P; Kühl HS
    Am J Primatol; 2017 Jul; 79(7):. PubMed ID: 28267880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drone images afford more detections of marine wildlife than real-time observers during simultaneous large-scale surveys.
    Hodgson AJ; Kelly N; Peel D
    PeerJ; 2023; 11():e16186. PubMed ID: 37941930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using imputation and mixture model approaches to integrate multi-state capture-recapture models with assignment information.
    Wen Z; Pollock KH; Nichols JD; Waser PM; Cao W
    Biometrics; 2014 Jun; 70(2):323-34. PubMed ID: 24571715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of accounting for detection heterogeneity when estimating abundance: the case of French wolves.
    Cubaynes S; Pradel R; Choquet R; Duchamp C; Gaillard JM; Lebreton JD; Marboutin E; Miquel C; Reboulet AM; Poillot C; Taberlet P; Gimenez O
    Conserv Biol; 2010 Apr; 24(2):621-6. PubMed ID: 20105205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of population density by spatially explicit capture-recapture analysis of data from area searches.
    Efford MG
    Ecology; 2011 Dec; 92(12):2202-7. PubMed ID: 22352159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hierarchical model for estimating the spatial distribution and abundance of animals detected by continuous-time recorders.
    Dorazio RM; Karanth KU
    PLoS One; 2017; 12(5):e0176966. PubMed ID: 28520796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating the size of an open population using sparse capture-recapture data.
    Huggins R; Stoklosa J; Roach C; Yip P
    Biometrics; 2018 Mar; 74(1):280-288. PubMed ID: 28632891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial correlation structures for detections of individuals in spatial capture-recapture models.
    Stevenson BC; Fewster RM; Sharma K
    Biometrics; 2022 Sep; 78(3):963-973. PubMed ID: 34051114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of spatial capture-recapture models with repurposed data: Assessing estimator robustness for retrospective applications.
    Smith JB; Stevens BS; Etter DR; Williams DM
    PLoS One; 2020; 15(8):e0236978. PubMed ID: 32797083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating abundance of an open population with an N-mixture model using auxiliary data on animal movements.
    Ketz AC; Johnson TL; Monello RJ; Mack JA; George JL; Kraft BR; Wild MA; Hooten MB; Hobbs NT
    Ecol Appl; 2018 Apr; 28(3):816-825. PubMed ID: 29405475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mark-recapture and mark-resight methods for estimating abundance with remote cameras: a carnivore case study.
    Alonso RS; McClintock BT; Lyren LM; Boydston EE; Crooks KR
    PLoS One; 2015; 10(3):e0123032. PubMed ID: 25822245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Unifying Model for Capture-Recapture and Distance Sampling Surveys of Wildlife Populations.
    Borchers DL; Stevenson BC; Kidney D; Thomas L; Marques TA
    J Am Stat Assoc; 2015 Jan; 110(509):195-204. PubMed ID: 26063947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.