These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 30298717)
1. Role of Bimolecular Exciton Kinetics in Controlling the Efficiency of Organic Light-Emitting Diodes. Dey A; Kabra D ACS Appl Mater Interfaces; 2018 Nov; 10(44):38287-38293. PubMed ID: 30298717 [TBL] [Abstract][Full Text] [Related]
2. Kinetics of Triplet Exciton Energy-Transfer Processes in Triplet Sensitizer-Doped Fluorescent Polymers. Dey A; Kabra D J Phys Chem A; 2019 Jun; 123(23):4858-4862. PubMed ID: 31117594 [TBL] [Abstract][Full Text] [Related]
3. Triplet-triplet annihilation in highly efficient fluorescent organic light-emitting diodes: current state and future outlook. Kondakov DY Philos Trans A Math Phys Eng Sci; 2015 Jun; 373(2044):. PubMed ID: 25987574 [TBL] [Abstract][Full Text] [Related]
4. Exciplex-Sensitized Triplet-Triplet Annihilation in Heterojunction Organic Thin-Film. Lin BY; Easley CJ; Chen CH; Tseng PC; Lee MZ; Sher PH; Wang JK; Chiu TL; Lin CF; Bardeen CJ; Lee JH ACS Appl Mater Interfaces; 2017 Mar; 9(12):10963-10970. PubMed ID: 28274116 [TBL] [Abstract][Full Text] [Related]
5. Doping-Free Phosphorescent and Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes with an Ultra-Thin Emission Layer. Jang EB; Choi GS; Bae EJ; Ju BK; Park YW Nanomaterials (Basel); 2023 Aug; 13(16):. PubMed ID: 37630950 [TBL] [Abstract][Full Text] [Related]
6. Suppressing singlet-triplet annihilation processes to achieve highly efficient deep-blue AIE-based OLEDs. Lin C; Han P; Qu F; Xiao S; Li Y; Xie D; Qiao X; Yang D; Dai Y; Sun Q; Qin A; Tang BZ; Ma D Mater Horiz; 2022 Aug; 9(9):2376-2383. PubMed ID: 35789246 [TBL] [Abstract][Full Text] [Related]
7. Deep Learning Prediction of Triplet-Triplet Annihilation Parameters in Blue Fluorescent Organic Light-Emitting Diodes. Lim J; Kim JM; Lee JY Adv Mater; 2024 Jul; 36(28):e2312774. PubMed ID: 38652081 [TBL] [Abstract][Full Text] [Related]
8. Triplets contribute to both an increase and loss in fluorescent yield in organic light emitting diodes. Zhang Y; Forrest SR Phys Rev Lett; 2012 Jun; 108(26):267404. PubMed ID: 23005014 [TBL] [Abstract][Full Text] [Related]
10. Slot-Die Coating of Double Polymer Layers for the Fabrication of Organic Light Emitting Diodes. C A; Colella M; Griffin J; Kingsley J; Scarratt N; Luszczynska B; Ulanski J Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30646572 [TBL] [Abstract][Full Text] [Related]
11. Enhancing Triplet-Triplet Upconversion Efficiency and Operational Lifetime in Blue Organic Light-Emitting Diodes by Utilizing Thermally Activated Delayed Fluorescence Materials. Nguyen TB; Nakanotani H; Chan CY; Kakumachi S; Adachi C ACS Appl Mater Interfaces; 2023 May; 15(19):23557-23563. PubMed ID: 37146232 [TBL] [Abstract][Full Text] [Related]
12. Suppression of external quantum efficiency rolloff in organic light emitting diodes by scavenging triplet excitons. Karunathilaka BSB; Balijapalli U; Senevirathne CAM; Yoshida S; Esaki Y; Goushi K; Matsushima T; Sandanayaka ASD; Adachi C Nat Commun; 2020 Oct; 11(1):4926. PubMed ID: 33004796 [TBL] [Abstract][Full Text] [Related]
13. Breaking the Efficiency Limit of Deep-Blue Fluorescent OLEDs Based on Anthracene Derivatives. Lim H; Woo SJ; Ha YH; Kim YH; Kim JJ Adv Mater; 2022 Jan; 34(1):e2100161. PubMed ID: 34687094 [TBL] [Abstract][Full Text] [Related]
14. Suppressing Efficiency Roll-Off of TADF Based OLEDs by Constructing Emitting Layer With Dual Delayed Fluorescence. Zhang Y; Li Z; Li C; Wang Y Front Chem; 2019; 7():302. PubMed ID: 31114787 [TBL] [Abstract][Full Text] [Related]
15. Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs. Furukawa T; Nakanotani H; Inoue M; Adachi C Sci Rep; 2015 Feb; 5():8429. PubMed ID: 25673259 [TBL] [Abstract][Full Text] [Related]
16. Kinetics of thermal-assisted delayed fluorescence in blue organic emitters with large singlet-triplet energy gap. Dias FB Philos Trans A Math Phys Eng Sci; 2015 Jun; 373(2044):. PubMed ID: 25987577 [TBL] [Abstract][Full Text] [Related]
17. Optoelectronic and charge transport properties at organic-organic semiconductor interfaces: comparison between polyfluorene-based polymer blend and copolymer. Kim JS; Lu L; Sreearunothai P; Seeley A; Yim KH; Petrozza A; Murphy CE; Beljonne D; Cornil J; Friend RH J Am Chem Soc; 2008 Oct; 130(39):13120-31. PubMed ID: 18767836 [TBL] [Abstract][Full Text] [Related]
18. Understanding the degradation mechanism of TTA-based blue fluorescent OLEDs by exciton dynamics and transient electroluminescence measurements. Wu Y; Xiao S; Guo K; Qiao X; Yang D; Dai Y; Sun Q; Chen J; Ma D Phys Chem Chem Phys; 2023 Nov; 25(43):29451-29458. PubMed ID: 37882197 [TBL] [Abstract][Full Text] [Related]
19. Investigations on exciton recombination and annihilation in TmPyPB-ETL OLEDs using magnetic field effects. Song J; Guan Y; Wang C; Bao X; Li W; Chen L; Niu L Phys Chem Chem Phys; 2023 Sep; 25(35):23783-23791. PubMed ID: 37622246 [TBL] [Abstract][Full Text] [Related]
20. Delayed fluorescence in a solution-processable pure red molecular organic emitter based on dithienylbenzothiadiazole: a joint optical, electroluminescence, and magnetoelectroluminescence study. Chen P; Wang LP; Tan WY; Peng QM; Zhang ST; Zhu XH; Li F ACS Appl Mater Interfaces; 2015 Feb; 7(4):2972-8. PubMed ID: 25585040 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]