These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30298723)

  • 21. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries.
    Yang Y; Zheng G; Misra S; Nelson J; Toney MF; Cui Y
    J Am Chem Soc; 2012 Sep; 134(37):15387-94. PubMed ID: 22909273
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a ReaxFF reactive force field for lithium ion conducting solid electrolyte Li
    Shin YK; Sengul MY; Jonayat ASM; Lee W; Gomez ED; Randall CA; Duin ACTV
    Phys Chem Chem Phys; 2018 Aug; 20(34):22134-22147. PubMed ID: 30116814
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries.
    Zhou G; Tian H; Jin Y; Tao X; Liu B; Zhang R; Seh ZW; Zhuo D; Liu Y; Sun J; Zhao J; Zu C; Wu DS; Zhang Q; Cui Y
    Proc Natl Acad Sci U S A; 2017 Jan; 114(5):840-845. PubMed ID: 28096362
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Facile Synthesis of Lithium Sulfide Nanocrystals for Use in Advanced Rechargeable Batteries.
    Li X; Wolden CA; Ban C; Yang Y
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28444-51. PubMed ID: 26633238
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Revealing the Electrochemical Charging Mechanism of Nanosized Li
    Zhang L; Sun D; Feng J; Cairns EJ; Guo J
    Nano Lett; 2017 Aug; 17(8):5084-5091. PubMed ID: 28731713
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting the composition and formation of solid products in lithium-sulfur batteries by using an experimental phase diagram.
    Dibden JW; Smith JW; Zhou N; Garcia-Araez N; Owen JR
    Chem Commun (Camb); 2016 Oct; 52(87):12885-12888. PubMed ID: 27738668
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interfacial Mechanism in Lithium-Sulfur Batteries: How Salts Mediate the Structure Evolution and Dynamics.
    Lang SY; Xiao RJ; Gu L; Guo YG; Wen R; Wan LJ
    J Am Chem Soc; 2018 Jul; 140(26):8147-8155. PubMed ID: 29883104
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stabilized Lithium-Metal Surface in a Polysulfide-Rich Environment of Lithium-Sulfur Batteries.
    Zu C; Manthiram A
    J Phys Chem Lett; 2014 Aug; 5(15):2522-7. PubMed ID: 26277939
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Refined Sulfur Nanoparticles Immobilized in Metal-Organic Polyhedron as Stable Cathodes for Li-S Battery.
    Bai L; Chao D; Xing P; Tou LJ; Chen Z; Jana A; Shen ZX; Zhao Y
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14328-33. PubMed ID: 27243384
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Revealing reaction mechanisms of nanoconfined Li
    Liu Z; Deng H; Hu W; Gao F; Zhang S; Balbuena PB; Mukherjee PP
    Phys Chem Chem Phys; 2018 May; 20(17):11713-11721. PubMed ID: 29683168
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lithium Sulfide-Carbon Composites via Aerosol Spray Pyrolysis as Cathode Materials for Lithium-Sulfur Batteries.
    Hart N; Shi J; Zhang J; Fu C; Guo J
    Front Chem; 2018; 6():476. PubMed ID: 30356846
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ammonium Additives to Dissolve Lithium Sulfide through Hydrogen Binding for High-Energy Lithium-Sulfur Batteries.
    Pan H; Han KS; Vijayakumar M; Xiao J; Cao R; Chen J; Zhang J; Mueller KT; Shao Y; Liu J
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4290-4295. PubMed ID: 27367455
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of lithium storage in MoS2 and the feasibility of using Li2S/Mo nanocomposites as cathode materials for lithium-sulfur batteries.
    Fang X; Guo X; Mao Y; Hua C; Shen L; Hu Y; Wang Z; Wu F; Chen L
    Chem Asian J; 2012 May; 7(5):1013-7. PubMed ID: 22374889
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Key Parameters Governing the Energy Density of Rechargeable Li/S Batteries.
    Gao J; Abruña HD
    J Phys Chem Lett; 2014 Mar; 5(5):882-5. PubMed ID: 26274082
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Minimizing Polysulfide Shuttle Effect in Lithium-Ion Sulfur Batteries by Anode Surface Passivation.
    Liu J; Lu D; Zheng J; Yan P; Wang B; Sun X; Shao Y; Wang C; Xiao J; Zhang JG; Liu J
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):21965-21972. PubMed ID: 29879356
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-Assembled Protein Nanofilter for Trapping Polysulfides and Promoting Li
    Fu X; Li C; Wang Y; Scudiero L; Liu J; Zhong WH
    J Phys Chem Lett; 2018 May; 9(10):2450-2459. PubMed ID: 29688730
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insights into Lithium Sulfide Glass Electrolyte Structures and Ionic Conductivity via Machine Learning Force Field Simulations.
    Zhou R; Luo K; Martin SW; An Q
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):18874-18887. PubMed ID: 38568163
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Double-Shelled Nanocages with Cobalt Hydroxide Inner Shell and Layered Double Hydroxides Outer Shell as High-Efficiency Polysulfide Mediator for Lithium-Sulfur Batteries.
    Zhang J; Hu H; Li Z; Lou XW
    Angew Chem Int Ed Engl; 2016 Mar; 55(12):3982-6. PubMed ID: 26894940
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graphene-Li2S-Carbon Nanocomposite for Lithium-Sulfur Batteries.
    Wu F; Lee JT; Zhao E; Zhang B; Yushin G
    ACS Nano; 2016 Jan; 10(1):1333-40. PubMed ID: 26647225
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ Raman spectroscopy of sulfur speciation in lithium-sulfur batteries.
    Wu HL; Huff LA; Gewirth AA
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1709-19. PubMed ID: 25543831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.