BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30299093)

  • 1. Exhaustive Exploration of the Conformational Landscape of Small Cyclic Peptides Using a Robotics Approach.
    Jusot M; Stratmann D; Vaisset M; Chomilier J; Cortés J
    J Chem Inf Model; 2018 Nov; 58(11):2355-2368. PubMed ID: 30299093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing Well-Structured Cyclic Pentapeptides Based on Sequence-Structure Relationships.
    Slough DP; McHugh SM; Cummings AE; Dai P; Pentelute BL; Kritzer JA; Lin YS
    J Phys Chem B; 2018 Apr; 122(14):3908-3919. PubMed ID: 29589926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Simulation of Conformational Pre-Organization in Cyclic RGD Peptides.
    Wakefield AE; Wuest WM; Voelz VA
    J Chem Inf Model; 2015 Apr; 55(4):806-13. PubMed ID: 25741627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Methods for Studying Conformational Behaviors of Cyclic Peptides.
    Jiang F; Geng H
    Methods Mol Biol; 2019; 2001():61-71. PubMed ID: 31134567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of cation-pi interactions in biomolecular association. Design of peptides favoring interactions between cationic and aromatic amino acid side chains.
    Pletneva EV; Laederach AT; Fulton DB; Kostic NM
    J Am Chem Soc; 2001 Jul; 123(26):6232-45. PubMed ID: 11427046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamically-Weighted Conformational Ensemble of Cyclic RGD Peptidomimetics from NOE Data.
    Vasile F; Civera M; Belvisi L; Potenza D; Tiana G
    J Phys Chem B; 2016 Jul; 120(29):7098-107. PubMed ID: 27387008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into How Cyclic Peptides Switch Conformations.
    McHugh SM; Rogers JR; Yu H; Lin YS
    J Chem Theory Comput; 2016 May; 12(5):2480-8. PubMed ID: 27031286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing αvβ3 selectivity of the anti-angiogenic drug cilengitide by N-methylation.
    Mas-Moruno C; Beck JG; Doedens L; Frank AO; Marinelli L; Cosconati S; Novellino E; Kessler H
    Angew Chem Int Ed Engl; 2011 Sep; 50(40):9496-500. PubMed ID: 21948451
    [No Abstract]   [Full Text] [Related]  

  • 9. Exploring the conformational space of cyclic peptides by a stochastic search method.
    Rayan A; Senderowitz H; Goldblum A
    J Mol Graph Model; 2004 May; 22(5):319-33. PubMed ID: 15099829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational methods to design cyclic peptides.
    McHugh SM; Rogers JR; Solomon SA; Yu H; Lin YS
    Curr Opin Chem Biol; 2016 Oct; 34():95-102. PubMed ID: 27592259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate Structure Prediction and Conformational Analysis of Cyclic Peptides with Residue-Specific Force Fields.
    Geng H; Jiang F; Wu YD
    J Phys Chem Lett; 2016 May; 7(10):1805-10. PubMed ID: 27128113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic Peptide Design Guided by Residual Dipolar Couplings, J-Couplings, and Intramolecular Hydrogen Bond Analysis.
    Farley KA; Che Y; Navarro-Vázquez A; Limberakis C; Anderson D; Yan J; Shapiro M; Shanmugasundaram V; Gil RR
    J Org Chem; 2019 Apr; 84(8):4803-4813. PubMed ID: 30605335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent-Enhanced Conformational Flexibility of Cyclic Tetrapeptides.
    Berger N; Wollny LJB; Sokkar P; Mittal S; Mieres-Perez J; Stoll R; Sander W; Sanchez-Garcia E
    Chemphyschem; 2019 Jul; 20(13):1664-1670. PubMed ID: 31045298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mimicry of beta II'-turns of proteins in cyclic pentapeptides with one and without D-amino acids.
    Weisshoff H; Präsang C; Henklein P; Frömmel C; Zschunke A; Mügge C
    Eur J Biochem; 1999 Feb; 259(3):776-88. PubMed ID: 10092864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward structure prediction of cyclic peptides.
    Yu H; Lin YS
    Phys Chem Chem Phys; 2015 Feb; 17(6):4210-9. PubMed ID: 25566700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidating Solution Structures of Cyclic Peptides Using Molecular Dynamics Simulations.
    Damjanovic J; Miao J; Huang H; Lin YS
    Chem Rev; 2021 Feb; 121(4):2292-2324. PubMed ID: 33426882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic beta-helical/beta-hairpin D,L-alpha-peptide: study of its folding properties and structure refinement using molecular dynamics.
    Meier K; van Gunsteren WF
    J Phys Chem A; 2010 Feb; 114(4):1852-9. PubMed ID: 20055405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass-weighted molecular dynamics simulation of cyclic polypeptides.
    Mao B; Maggiora GM; Chou KC
    Biopolymers; 1991 Aug; 31(9):1077-86. PubMed ID: 1786339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Opportunities and Challenges in Finding Cyclic Peptide Modulators of Protein-Protein Interactions.
    Duffy F; Maheshwari N; Buchete NV; Shields D
    Methods Mol Biol; 2019; 2001():73-95. PubMed ID: 31134568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Full cyclic coordinate descent: solving the protein loop closure problem in Calpha space.
    Boomsma W; Hamelryck T
    BMC Bioinformatics; 2005 Jun; 6():159. PubMed ID: 15985178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.