These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 3029975)

  • 1. Characterization of Kunjin virus RNA-dependent RNA polymerase: reinitiation of synthesis in vitro.
    Chu PW; Westaway EG
    Virology; 1987 Apr; 157(2):330-7. PubMed ID: 3029975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA-dependent RNA polymerase activity in murine coronavirus-infected cells.
    Mahy BW; Siddell S; Wege H; ter Meulen V
    J Gen Virol; 1983 Jan; 64 (Pt 1)():103-11. PubMed ID: 6296295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of West Nile virus RNA-dependent RNA polymerase and cellular terminal adenylyl and uridylyl transferases in cell-free extracts.
    Grun JB; Brinton MA
    J Virol; 1986 Dec; 60(3):1113-24. PubMed ID: 3023663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression and purification of enzymatically active recombinant RNA-dependent RNA polymerase (NS5) of the flavivirus Kunjin.
    Guyatt KJ; Westaway EG; Khromykh AA
    J Virol Methods; 2001 Mar; 92(1):37-44. PubMed ID: 11164916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of dengue virus RNA in vitro: initiation and the involvement of proteins NS3 and NS5.
    Bartholomeusz AI; Wright PJ
    Arch Virol; 1993; 128(1-2):111-21. PubMed ID: 8418788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of centrifugation methods for molecular and morphological analysis of membranes associated with RNA replication of the flavivirus Kunjin.
    Chu PW; Westaway EG; Coia G
    J Virol Methods; 1992 May; 37(2):219-34. PubMed ID: 1597508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tobacco mosaic virus replicase and replicative structures.
    Young N; Forney J; Zaitlin M
    J Cell Sci Suppl; 1987; 7():277-85. PubMed ID: 3503886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Replication strategy of Kunjin virus: evidence for recycling role of replicative form RNA as template in semiconservative and asymmetric replication.
    Chu PW; Westaway EG
    Virology; 1985 Jan; 140(1):68-79. PubMed ID: 2578239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro synthesis of double-stranded RNA by carnation cryptic virus-associated RNA-dependent RNA polymerase.
    MarzachĂ­ C; Milne RG; Boccardo G
    Virology; 1988 Jul; 165(1):115-21. PubMed ID: 3388765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro synthesis of Japanese encephalitis virus (JEV) RNA: membrane and nuclear fractions of JEV-infected cells possess high levels of virus-specific RNA polymerase activity.
    Takegami T; Hotta S
    Virus Res; 1989 Aug; 13(4):337-50. PubMed ID: 2816040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro evidence that the coat protein of alfalfa mosaic virus plays a direct role in the regulation of plus and minus RNA synthesis: implications for the life cycle of alfalfa mosaic virus.
    De Graaff M; Man in't Veld MR; Jaspars EM
    Virology; 1995 Apr; 208(2):583-9. PubMed ID: 7747430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of a nonstructural protein in the RNA synthesis of brome mosaic virus.
    Quadt R; Verbeek HJ; Jaspars EM
    Virology; 1988 Jul; 165(1):256-61. PubMed ID: 3388771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-dependent RNA polymerase activity associated with endogenous double-stranded RNA in rice.
    Horiuchi H; Udagawa T; Koga R; Moriyama H; Fukuhara T
    Plant Cell Physiol; 2001 Feb; 42(2):197-203. PubMed ID: 11230574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of brome mosaic virus RNA-dependent RNA polymerase in yeast requires coexpression of viral proteins and viral RNA.
    Quadt R; Ishikawa M; Janda M; Ahlquist P
    Proc Natl Acad Sci U S A; 1995 May; 92(11):4892-6. PubMed ID: 7761419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minus-strand initiation by brome mosaic virus replicase within the 3' tRNA-like structure of native and modified RNA templates.
    Miller WA; Bujarski JJ; Dreher TW; Hall TC
    J Mol Biol; 1986 Feb; 187(4):537-46. PubMed ID: 3754904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro transcription of viroid RNA into full-length copies by RNA-dependent RNA polymerase from healthy tomato leaf tissue.
    Boege F; Rohde W; Sänger HL
    Biosci Rep; 1982 Mar; 2(3):185-94. PubMed ID: 6896006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of rotavirus replication intermediates: a model for the assembly of single-shelled particles.
    Gallegos CO; Patton JT
    Virology; 1989 Oct; 172(2):616-27. PubMed ID: 2552662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of double-stranded RNA templates by the tombusvirus replicase in vitro: Implications for the mechanism of plus-strand initiation.
    Panavas T; Stork J; Nagy PD
    Virology; 2006 Aug; 352(1):110-20. PubMed ID: 16765402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rotavirus RNA replication: single-stranded RNA extends from the replicase particle.
    Patton JT; Gallegos CO
    J Gen Virol; 1990 May; 71 ( Pt 5)():1087-94. PubMed ID: 2161046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo synthesis of minus strand RNA by the rotavirus RNA polymerase in a cell-free system involves a novel mechanism of initiation.
    Chen D; Patton JT
    RNA; 2000 Oct; 6(10):1455-67. PubMed ID: 11073221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.