These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 30299954)
21. In situ visualization of Li-ion intercalation and formation of the solid electrolyte interphase on TiO2 based paste electrodes using scanning electrochemical microscopy. Zampardi G; Ventosa E; La Mantia F; Schuhmann W Chem Commun (Camb); 2013 Oct; 49(81):9347-9. PubMed ID: 24003444 [TBL] [Abstract][Full Text] [Related]
22. Lithium Dendrite Suppression and Enhanced Interfacial Compatibility Enabled by an Ex Situ SEI on Li Anode for LAGP-Based All-Solid-State Batteries. Hou G; Ma X; Sun Q; Ai Q; Xu X; Chen L; Li D; Chen J; Zhong H; Li Y; Xu Z; Si P; Feng J; Zhang L; Ding F; Ci L ACS Appl Mater Interfaces; 2018 Jun; 10(22):18610-18618. PubMed ID: 29758163 [TBL] [Abstract][Full Text] [Related]
24. Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy. Unocic RR; Sun XG; Sacci RL; Adamczyk LA; Alsem DH; Dai S; Dudney NJ; More KL Microsc Microanal; 2014 Aug; 20(4):1029-37. PubMed ID: 24994021 [TBL] [Abstract][Full Text] [Related]
25. Composition and evolution of the solid-electrolyte interphase in Na2Ti3O7 electrodes for Na-ion batteries: XPS and Auger parameter analysis. Muñoz-Márquez MA; Zarrabeitia M; Castillo-Martínez E; Eguía-Barrio A; Rojo T; Casas-Cabanas M ACS Appl Mater Interfaces; 2015 Apr; 7(14):7801-8. PubMed ID: 25811538 [TBL] [Abstract][Full Text] [Related]
26. Regulating the Inner Helmholtz Plane for Stable Solid Electrolyte Interphase on Lithium Metal Anodes. Yan C; Li HR; Chen X; Zhang XQ; Cheng XB; Xu R; Huang JQ; Zhang Q J Am Chem Soc; 2019 Jun; 141(23):9422-9429. PubMed ID: 31117672 [TBL] [Abstract][Full Text] [Related]
27. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
28. Electrochemically Controlled Solid Electrolyte Interphase Layers Enable Superior Li-S Batteries. Wang Y; Lin CF; Rao J; Gaskell K; Rubloff G; Lee SB ACS Appl Mater Interfaces; 2018 Jul; 10(29):24554-24563. PubMed ID: 29956907 [TBL] [Abstract][Full Text] [Related]
29. Revisiting Solid Electrolyte Interphase on the Carbonaceous Electrodes Using Soft X-ray Absorption Spectroscopy. Kim Y; Kim DS; Um JH; Yoon J; Kim JM; Kim H; Yoon WS ACS Appl Mater Interfaces; 2018 Sep; 10(35):29992-29999. PubMed ID: 30088911 [TBL] [Abstract][Full Text] [Related]
30. Probing the reversibility and kinetics of Li Gossage ZT; Hui J; Zeng Y; Flores-Zuleta H; Rodríguez-López J Chem Sci; 2019 Dec; 10(46):10749-10754. PubMed ID: 32055381 [TBL] [Abstract][Full Text] [Related]
31. Operando Measurement of Solid Electrolyte Interphase Formation at Working Electrode of Li-Ion Battery by Time-Slicing Neutron Reflectometry. Kawaura H; Harada M; Kondo Y; Kondo H; Suganuma Y; Takahashi N; Sugiyama J; Seno Y; Yamada NL ACS Appl Mater Interfaces; 2016 Apr; 8(15):9540-4. PubMed ID: 27031783 [TBL] [Abstract][Full Text] [Related]
32. Stabilizing Li Zheng B; Zhu J; Wang H; Feng M; Umeshbabu E; Li Y; Wu QH; Yang Y ACS Appl Mater Interfaces; 2018 Aug; 10(30):25473-25482. PubMed ID: 29989392 [TBL] [Abstract][Full Text] [Related]
33. Dynamical observation of lithium insertion/extraction reaction during charge-discharge processes in Li-ion batteries by in situ spatially resolved electron energy-loss spectroscopy. Shimoyamada A; Yamamoto K; Yoshida R; Kato T; Iriyama Y; Hirayama T Microscopy (Oxf); 2015 Dec; 64(6):401-8. PubMed ID: 26337787 [TBL] [Abstract][Full Text] [Related]
34. Impact of cis- versus trans-Configuration of Butylene Carbonate Electrolyte on Microscopic Solid Electrolyte Interphase Formation Processes in Lithium-Ion Batteries. Miyazaki K; Takenaka N; Fujie T; Watanabe E; Yamada Y; Yamada A; Nagaoka M ACS Appl Mater Interfaces; 2019 May; 11(17):15623-15629. PubMed ID: 30945849 [TBL] [Abstract][Full Text] [Related]
35. Role of surface oxides in the formation of solid-electrolyte interphases at silicon electrodes for lithium-ion batteries. Schroder KW; Dylla AG; Harris SJ; Webb LJ; Stevenson KJ ACS Appl Mater Interfaces; 2014 Dec; 6(23):21510-24. PubMed ID: 25402271 [TBL] [Abstract][Full Text] [Related]
36. Reversible Cycling of Graphite Electrodes in Propylene Carbonate Electrolytes Enabled by Ethyl Isothiocyanate. Li X; Guo L; Li J; Wang E; Liu T; Wang G; Sun K; Liu C; Peng Z ACS Appl Mater Interfaces; 2021 Jun; 13(22):26023-26033. PubMed ID: 34032410 [TBL] [Abstract][Full Text] [Related]
37. The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte-cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation. Cherkashinin G; Nikolowski K; Ehrenberg H; Jacke S; Dimesso L; Jaegermann W Phys Chem Chem Phys; 2012 Sep; 14(35):12321-31. PubMed ID: 22858824 [TBL] [Abstract][Full Text] [Related]
38. Controlling Solid-Electrolyte-Interphase Layer by Coating P-Type Semiconductor NiOx on Li4Ti5O12 for High-Energy-Density Lithium-Ion Batteries. Jo MR; Lee GH; Kang YM ACS Appl Mater Interfaces; 2015 Dec; 7(50):27934-9. PubMed ID: 26619966 [TBL] [Abstract][Full Text] [Related]
39. Existence of Solid Electrolyte Interphase in Mg Batteries: Mg/S Chemistry as an Example. Gao T; Hou S; Huynh K; Wang F; Eidson N; Fan X; Han F; Luo C; Mao M; Li X; Wang C ACS Appl Mater Interfaces; 2018 May; 10(17):14767-14776. PubMed ID: 29620854 [TBL] [Abstract][Full Text] [Related]
40. Suppression of Dendritic Lithium Growth by in Situ Formation of a Chemically Stable and Mechanically Strong Solid Electrolyte Interphase. Wan G; Guo F; Li H; Cao Y; Ai X; Qian J; Li Y; Yang H ACS Appl Mater Interfaces; 2018 Jan; 10(1):593-601. PubMed ID: 29243904 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]