BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 30300019)

  • 1. Applying lessons from human papillomavirus vaccines to the development of vaccines against Chlamydia trachomatis.
    Frietze KM; Lijek R; Chackerian B
    Expert Rev Vaccines; 2018 Nov; 17(11):959-966. PubMed ID: 30300019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a multi-epitope protein vaccine against herpes simplex virus, human papillomavirus and Chlamydia trachomatis as the main causes of sexually transmitted diseases.
    Dorosti H; Eskandari S; Zarei M; Nezafat N; Ghasemi Y
    Infect Genet Evol; 2021 Dec; 96():105136. PubMed ID: 34775078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA plasmid vaccine carrying Chlamydia trachomatis (Ct) major outer membrane and human papillomavirus 16L2 proteins for anti-Ct infection.
    Wang L; Cai Y; Xiong Y; Du W; Cen D; Zhang C; Song Y; Zhu S; Xue X; Zhang L
    Oncotarget; 2017 May; 8(20):33241-33251. PubMed ID: 28402260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibodies to Variable Domain 4 Linear Epitopes of the
    Collar AL; Linville AC; Core SB; Wheeler CM; Geisler WM; Peabody DS; Chackerian B; Frietze KM
    mSphere; 2020 Sep; 5(5):. PubMed ID: 32968007
    [No Abstract]   [Full Text] [Related]  

  • 5. Development of a Chlamydia trachomatis vaccine for urogenital infections: novel tools and new strategies point to bright future prospects.
    Hafner LM; Timms P
    Expert Rev Vaccines; 2018 Jan; 17(1):57-69. PubMed ID: 29264970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a broadly protective Chlamydia-cholera combination vaccine candidate.
    Eko FO; Okenu DN; Singh UP; He Q; Black C; Igietseme JU
    Vaccine; 2011 May; 29(21):3802-10. PubMed ID: 21421002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subunit vaccines for the prevention of mucosal infection with Chlamydia trachomatis.
    Yu H; Karunakaran KP; Jiang X; Brunham RC
    Expert Rev Vaccines; 2016 Aug; 15(8):977-88. PubMed ID: 26938202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Th1/Th17 T cell Tissue-Resident Immunity Increases Protection, But Is Not Required in a Vaccine Strategy Against Genital Infection With
    Nguyen NDNT; Guleed S; Olsen AW; Follmann F; Christensen JP; Dietrich J
    Front Immunol; 2021; 12():790463. PubMed ID: 34925371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vaccines for sexually transmitted infections.
    Rupp RE; Stanberry LR; Rosenthal SL
    Pediatr Ann; 2005 Oct; 34(10):818-20, 822-4. PubMed ID: 16285635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlamydia trachomatis: Protective Adaptive Responses and Prospects for a Vaccine.
    Poston TB; Darville T
    Curr Top Microbiol Immunol; 2018; 412():217-237. PubMed ID: 27033698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunity, immunopathology, and human vaccine development against sexually transmitted Chlamydia trachomatis.
    Rey-Ladino J; Ross AG; Cripps AW
    Hum Vaccin Immunother; 2014; 10(9):2664-73. PubMed ID: 25483666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatitis B virus core antigen as a carrier for Chlamydia trachomatis MOMP multi-epitope peptide enhances protection against genital chlamydial infection.
    Jiang P; Du W; Xiong Y; Lv Y; Feng J; Zhu S; Xue X; Chen S; Zhang L
    Oncotarget; 2015 Dec; 6(41):43281-92. PubMed ID: 26657117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlamydia trachomatis infection control programs: lessons learned and implications for vaccine development.
    Chavez JM; Vicetti Miguel RD; Cherpes TL
    Infect Dis Obstet Gynecol; 2011; 2011():754060. PubMed ID: 22144851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developments in L2-based human papillomavirus (HPV) vaccines.
    Schellenbacher C; Roden RBS; Kirnbauer R
    Virus Res; 2017 Mar; 231():166-175. PubMed ID: 27889616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerosol delivery of virus-like particles to the genital tract induces local and systemic antibody responses.
    Hunter Z; Tumban E; Dziduszko A; Chackerian B
    Vaccine; 2011 Jun; 29(28):4584-92. PubMed ID: 21549786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing Chimeric Virus-like Particle-based Vaccines for Human Papillomavirus and HIV: Lessons Learned.
    Eto Y; Saubi N; Ferrer P; Joseph J
    AIDS Rev; 2019; 21(4):218-232. PubMed ID: 31834327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virus-like particles for the prevention of human papillomavirus-associated malignancies.
    Wang JW; Roden RB
    Expert Rev Vaccines; 2013 Feb; 12(2):129-41. PubMed ID: 23414405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of novel recombinant vaccine antigens for immunization against genital Chlamydia trachomatis.
    Coler RN; Bhatia A; Maisonneuve JF; Probst P; Barth B; Ovendale P; Fang H; Alderson M; Lobet Y; Cohen J; Mettens P; Reed SG
    FEMS Immunol Med Microbiol; 2009 Mar; 55(2):258-70. PubMed ID: 19281568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Status of vaccine research and development of vaccines for Chlamydia trachomatis infection.
    Poston TB; Gottlieb SL; Darville T
    Vaccine; 2019 Nov; 37(50):7289-7294. PubMed ID: 28111145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Considerations for the rational design of a Chlamydia vaccine.
    Liang S; Bulir D; Kaushic C; Mahony J
    Hum Vaccin Immunother; 2017 Apr; 13(4):831-835. PubMed ID: 27835064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.