BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 30300141)

  • 81. Caveolin-2 deficiency induces a rapid anti-tumor immune response prior to regression of implanted murine lung carcinoma tumors.
    Liu Y; Qi X; Li G; Sowa G
    Sci Rep; 2019 Dec; 9(1):18970. PubMed ID: 31831780
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Cellular and vaccine immunotherapy for multiple myeloma.
    Garfall AL; Stadtmauer EA
    Hematology Am Soc Hematol Educ Program; 2016 Dec; 2016(1):521-527. PubMed ID: 27913524
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Impact of TCR Diversity on the Development of Transplanted or Chemically Induced Tumors.
    Schreiber K; Karrison TG; Wolf SP; Kiyotani K; Steiner M; Littmann ER; Pamer EG; Kammertoens T; Schreiber H; Leisegang M
    Cancer Immunol Res; 2020 Feb; 8(2):192-202. PubMed ID: 31831634
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Monoclonal TCR-redirected tumor cell killing.
    Liddy N; Bossi G; Adams KJ; Lissina A; Mahon TM; Hassan NJ; Gavarret J; Bianchi FC; Pumphrey NJ; Ladell K; Gostick E; Sewell AK; Lissin NM; Harwood NE; Molloy PE; Li Y; Cameron BJ; Sami M; Baston EE; Todorov PT; Paston SJ; Dennis RE; Harper JV; Dunn SM; Ashfield R; Johnson A; McGrath Y; Plesa G; June CH; Kalos M; Price DA; Vuidepot A; Williams DD; Sutton DH; Jakobsen BK
    Nat Med; 2012 Jun; 18(6):980-7. PubMed ID: 22561687
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A STING-activating nanovaccine for cancer immunotherapy.
    Luo M; Wang H; Wang Z; Cai H; Lu Z; Li Y; Du M; Huang G; Wang C; Chen X; Porembka MR; Lea J; Frankel AE; Fu YX; Chen ZJ; Gao J
    Nat Nanotechnol; 2017 Jul; 12(7):648-654. PubMed ID: 28436963
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Immune Phenotypes and Target Antigens of Clonally Expanded Bone Marrow T Cells in Treatment-Naïve Multiple Myeloma.
    Welters C; Lammoglia Cobo MF; Stein CA; Hsu MT; Ben Hamza A; Penter L; Chen X; Buccitelli C; Popp O; Mertins P; Dietze K; Bullinger L; Moosmann A; Blanc E; Beule D; Gerbitz A; Strobel J; Hackstein H; Rahn HP; Dornmair K; Blankenstein T; Hansmann L
    Cancer Immunol Res; 2022 Nov; 10(11):1407-1419. PubMed ID: 36122410
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Microbiota-driven interleukin-17-producing cells and eosinophils synergize to accelerate multiple myeloma progression.
    Calcinotto A; Brevi A; Chesi M; Ferrarese R; Garcia Perez L; Grioni M; Kumar S; Garbitt VM; Sharik ME; Henderson KJ; Tonon G; Tomura M; Miwa Y; Esplugues E; Flavell RA; Huber S; Canducci F; Rajkumar VS; Bergsagel PL; Bellone M
    Nat Commun; 2018 Dec; 9(1):4832. PubMed ID: 30510245
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Regulatory T cells suppress myeloma-specific immunity during autologous stem cell mobilization and transplantation.
    Takahashi S; Minnie SA; Ensbey KS; Schmidt CR; Sekiguchi T; Legg SRW; Zhang P; Koyama M; Olver SD; Collinge AD; Keshmiri S; Comstock ML; Varelias A; Green DJ; Hill GR
    Blood; 2024 Apr; 143(16):1656-1669. PubMed ID: 38295333
    [TBL] [Abstract][Full Text] [Related]  

  • 89. CD8+ T cells specific for cancer germline gene antigens are found in many patients with multiple myeloma, and their frequency correlates with disease burden.
    Goodyear O; Piper K; Khan N; Starczynski J; Mahendra P; Pratt G; Moss P
    Blood; 2005 Dec; 106(13):4217-24. PubMed ID: 16144804
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Immune responses in multiple myeloma: role of the natural immune surveillance and potential of immunotherapies.
    Guillerey C; Nakamura K; Vuckovic S; Hill GR; Smyth MJ
    Cell Mol Life Sci; 2016 Apr; 73(8):1569-89. PubMed ID: 26801219
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A novel role of IL-17-producing lymphocytes in mediating lytic bone disease in multiple myeloma.
    Noonan K; Marchionni L; Anderson J; Pardoll D; Roodman GD; Borrello I
    Blood; 2010 Nov; 116(18):3554-63. PubMed ID: 20664052
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Preclinical models for prediction of immunotherapy outcomes and immune evasion mechanisms in genetically heterogeneous multiple myeloma.
    Larrayoz M; Garcia-Barchino MJ; Celay J; Etxebeste A; Jimenez M; Perez C; Ordoñez R; Cobaleda C; Botta C; Fresquet V; Roa S; Goicoechea I; Maia C; Lasaga M; Chesi M; Bergsagel PL; Larrayoz MJ; Calasanz MJ; Campos-Sanchez E; Martinez-Cano J; Panizo C; Rodriguez-Otero P; Vicent S; Roncador G; Gonzalez P; Takahashi S; Katz SG; Walensky LD; Ruppert SM; Lasater EA; Amann M; Lozano T; Llopiz D; Sarobe P; Lasarte JJ; Planell N; Gomez-Cabrero D; Kudryashova O; Kurilovich A; Revuelta MV; Cerchietti L; Agirre X; San Miguel J; Paiva B; Prosper F; Martinez-Climent JA
    Nat Med; 2023 Mar; 29(3):632-645. PubMed ID: 36928817
    [TBL] [Abstract][Full Text] [Related]  

  • 93. CXCL10 Recruitment of γδ T Cells into the Hypoxic Bone Marrow Environment Leads to IL17 Expression and Multiple Myeloma Progression.
    Wang J; Peng Z; Guo J; Wang Y; Wang S; Jiang H; Wang M; Xie Y; Li X; Hu M; Xie Y; Cheng H; Li T; Jia L; Song J; Wang Y; Hou J; Liu Z
    Cancer Immunol Res; 2023 Oct; 11(10):1384-1399. PubMed ID: 37586075
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Diet-induced obesity reduces bone marrow T and B cells and promotes tumor progression in a transplantable Vk*MYC model of multiple myeloma.
    Nedal TMV; Moen SH; Roseth IA; Tryggestad SS; Aass KR; Hov GG; Hella H; Sponaas AM; Standal T
    Sci Rep; 2024 Feb; 14(1):3643. PubMed ID: 38351079
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Immunity and protection, the unfolding of a tale.
    Zanetti M
    Immunol Res; 2007; 38(1-3):305-18. PubMed ID: 17917038
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Immunoregulatory roles of versican proteolysis in the myeloma microenvironment.
    Hope C; Foulcer S; Jagodinsky J; Chen SX; Jensen JL; Patel S; Leith C; Maroulakou I; Callander N; Miyamoto S; Hematti P; Apte SS; Asimakopoulos F
    Blood; 2016 Aug; 128(5):680-5. PubMed ID: 27259980
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Tissue-resident macrophages promote early dissemination of multiple myeloma via IL-6 and TNFα.
    Akhmetzyanova I; Aaron T; Galbo P; Tikhonova A; Dolgalev I; Tanaka M; Aifantis I; Zheng D; Zang X; Fooksman D
    Blood Adv; 2021 Sep; 5(18):3592-3608. PubMed ID: 34550328
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Relapsed multiple myeloma demonstrates distinct patterns of immune microenvironment and malignant cell-mediated immunosuppression.
    Visram A; Dasari S; Anderson E; Kumar S; Kourelis TV
    Blood Cancer J; 2021 Mar; 11(3):45. PubMed ID: 33649314
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Uptake of long-chain fatty acids from the bone marrow suppresses CD8+ T-cell metabolism and function in multiple myeloma.
    Gudgeon N; Giles H; Bishop EL; Fulton-Ward T; Escribano-Gonzalez C; Munford H; James-Bott A; Foster K; Karim F; Jayawardana D; Mahmood A; Cribbs AP; Tennant DA; Basu S; Pratt G; Dimeloe S
    Blood Adv; 2023 Oct; 7(20):6035-6047. PubMed ID: 37276076
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Identification of pluripotent and adult stem cell genes unrelated to cell cycle and associated with poor prognosis in multiple myeloma.
    Kassambara A; Hose D; Moreaux J; Rème T; Torrent J; Rossi JF; Goldschmidt H; Klein B
    PLoS One; 2012; 7(7):e42161. PubMed ID: 22860071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.