These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30300442)

  • 1. Flexible and Implantable Microelectrodes for Chronically Stable Neural Interfaces.
    Shi J; Fang Y
    Adv Mater; 2019 Nov; 31(45):e1804895. PubMed ID: 30300442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro- and nanotechnology for neural electrode-tissue interfaces.
    Liu S; Zhao Y; Hao W; Zhang XD; Ming D
    Biosens Bioelectron; 2020 Dec; 170():112645. PubMed ID: 33010703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired flexible electronics for seamless neural interfacing and chronic recording.
    Li H; Wang J; Fang Y
    Nanoscale Adv; 2020 Aug; 2(8):3095-3102. PubMed ID: 36134275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible, Penetrating Brain Probes Enabled by Advances in Polymer Microfabrication.
    Weltman A; Yoo J; Meng E
    Micromachines (Basel); 2016 Oct; 7(10):. PubMed ID: 30404353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastocapillary self-assembled neurotassels for stable neural activity recordings.
    Guan S; Wang J; Gu X; Zhao Y; Hou R; Fan H; Zou L; Gao L; Du M; Li C; Fang Y
    Sci Adv; 2019 Mar; 5(3):eaav2842. PubMed ID: 30944856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-fouling peptide functionalization of ultraflexible neural probes for long-term neural activity recordings in the brain.
    Zou Y; Wang J; Guan S; Zou L; Gao L; Li H; Fang Y; Wang C
    Biosens Bioelectron; 2021 Nov; 192():113477. PubMed ID: 34284305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of insertion methods for surgical placement of penetrating neural interfaces.
    Thielen B; Meng E
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33845469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes.
    Vitale F; Summerson SR; Aazhang B; Kemere C; Pasquali M
    ACS Nano; 2015; 9(4):4465-74. PubMed ID: 25803728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering.
    Canales A; Park S; Kilias A; Anikeeva P
    Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer Composite with Carbon Nanofibers Aligned during Thermal Drawing as a Microelectrode for Chronic Neural Interfaces.
    Guo Y; Jiang S; Grena BJB; Kimbrough IF; Thompson EG; Fink Y; Sontheimer H; Yoshinobu T; Jia X
    ACS Nano; 2017 Jul; 11(7):6574-6585. PubMed ID: 28570813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer Implantable Electrode Foundry: A shared resource for manufacturing polymer-based microelectrodes for neural interfaces.
    Scholten K; Xu H; Lu Z; Jiang W; Ortigoza-Diaz J; Petrossians A; Orler S; Gallonio R; Liu X; Song D; Meng E
    bioRxiv; 2023 Nov; ():. PubMed ID: 37986740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term recording performance and biocompatibility of chronically implanted cylindrically-shaped, polymer-based neural interfaces.
    Fiáth R; Hofer KT; Csikós V; Horváth D; Nánási T; Tóth K; Pothof F; Böhler C; Asplund M; Ruther P; Ulbert I
    Biomed Tech (Berl); 2018 Jun; 63(3):301-315. PubMed ID: 29478038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording.
    Patil AC; Thakor NV
    Med Biol Eng Comput; 2016 Jan; 54(1):23-44. PubMed ID: 26753777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces.
    Kozai TD; Langhals NB; Patel PR; Deng X; Zhang H; Smith KL; Lahann J; Kotov NA; Kipke DR
    Nat Mater; 2012 Dec; 11(12):1065-73. PubMed ID: 23142839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon-Based Fiber Materials as Implantable Depth Neural Electrodes.
    Fu X; Li G; Niu Y; Xu J; Wang P; Zhou Z; Ye Z; Liu X; Xu Z; Yang Z; Zhang Y; Lei T; Zhang B; Li Q; Cao A; Jiang T; Duan X
    Front Neurosci; 2021; 15():771980. PubMed ID: 35002602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic Actuation of Flexible Microelectrode Arrays for Neural Activity Recordings.
    Gao L; Wang J; Guan S; Du M; Wu K; Xu K; Zou L; Tian H; Fang Y
    Nano Lett; 2019 Nov; 19(11):8032-8039. PubMed ID: 31580687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive movable neural interfaces for monitoring single neurons in the brain.
    Muthuswamy J; Anand S; Sridharan A
    Front Neurosci; 2011; 5():94. PubMed ID: 21927593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic Neuroelectronics: From Neural Interfaces to Neuroprosthetics.
    Go GT; Lee Y; Seo DG; Lee TW
    Adv Mater; 2022 Nov; 34(45):e2201864. PubMed ID: 35925610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Progress on Non-Conventional Microfabricated Probes for the Chronic Recording of Cortical Neural Activity.
    Kim C; Jeong J; Kim SJ
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30832357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.