These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30300781)

  • 41. [Effluent carbon source improvement and sludge reduction by hydrolysis reactor with enhanced sludge utilization].
    Xiong Y; Wang Q; Song YH; Zhu M; Lin XJ
    Huan Jing Ke Xue; 2013 Jul; 34(7):2748-51. PubMed ID: 24028008
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Granulation in high-load denitrifying upflow sludge bed (USB) pulsed reactors.
    Franco A; Roca E; Lema JM
    Water Res; 2006 Mar; 40(5):871-80. PubMed ID: 16497354
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microbial activity in a combined UASB-activated sludge reactor system.
    Huang JS; Wu CS; Chen CM
    Chemosphere; 2005 Nov; 61(7):1032-41. PubMed ID: 16257323
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Coupled UASB-activated sludge process for COD and nitrogen removals in municipal sewage treatment in warm climate.
    Cao YS; Ang CM
    Water Sci Technol; 2009; 60(11):2829-39. PubMed ID: 19934504
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Aerobic treatment of palm oil mill effluent.
    Vijayaraghavan K; Ahmad D; Ezani Bin Abdul Aziz M
    J Environ Manage; 2007 Jan; 82(1):24-31. PubMed ID: 16584834
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Characteristics of nitrogen removal in aerobic granular sludge membrane bioreactor].
    Wang JF; Wang X; Ji M; Lu S; Yang ZY; Li JW
    Huan Jing Ke Xue; 2007 Mar; 28(3):528-33. PubMed ID: 17633628
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Removal of antibiotic sulfamethoxazole by anoxic/anaerobic/oxic granular and suspended activated sludge processes.
    Kang AJ; Brown AK; Wong CS; Yuan Q
    Bioresour Technol; 2018 Mar; 251():151-157. PubMed ID: 29274854
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimizing sequencing batch reactor (SBR) reactor operation for treatment of dairy wastewater with aerobic granular sludge.
    Wichern M; Lübken M; Horn H
    Water Sci Technol; 2008; 58(6):1199-206. PubMed ID: 18845857
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Effect of gas-lift device on nitrogen removal efficiency of ANAMMOX reactor ].
    Xiang L; Zhang DL; Huang Y; Chen ZH; Yuan Y
    Huan Jing Ke Xue; 2014 Sep; 35(9):3449-54. PubMed ID: 25518664
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of a 2-sludge, 3-stage system for nitrogen and phosphorous removal from nutrient-rich wastewater using granular sludge and biofilms.
    Zhou Y; Pijuan M; Yuan Z
    Water Res; 2008 Jun; 42(12):3207-17. PubMed ID: 18472126
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A comparison of aerobic granular sludge with conventional and compact biological treatment technologies.
    Bengtsson S; de Blois M; Wilén BM; Gustavsson D
    Environ Technol; 2019 Sep; 40(21):2769-2778. PubMed ID: 29533707
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Effect of gas-lift device on the morphology and performance of ANAMMOX sludge].
    Li X; Huang Y; Yuan Y; Zhou C; Chen ZH; Zhang DL
    Huan Jing Ke Xue; 2014 Dec; 35(12):4636-41. PubMed ID: 25826935
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Performance evaluation of hybrid and conventional sequencing batch reactor and continuous processes.
    Tam HL; Tang DT; Leung WY; Ho KM; Greenfield PF
    Water Sci Technol; 2004; 50(10):59-65. PubMed ID: 15656296
    [TBL] [Abstract][Full Text] [Related]  

  • 54. On-site evaluation of the performance of a full-scale down-flow hanging sponge reactor as a post-treatment process of an up-flow anaerobic sludge blanket reactor for treating sewage in India.
    Okubo T; Onodera T; Uemura S; Yamaguchi T; Ohashi A; Harada H
    Bioresour Technol; 2015 Oct; 194():156-64. PubMed ID: 26188558
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pseudo-analytical solutions for multi-species biofilm model of aerobic granular sludge.
    Cui F; Kim M; Lee W; Park C; Kim M
    Environ Technol; 2021 Sep; 42(22):3421-3431. PubMed ID: 32085686
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Performance of aerobic granular sludge at variable circulation rate in anaerobic-aerobic conditions.
    Harun H; Anuar AN; Ujang Z; Rosman NH; Othman I
    Water Sci Technol; 2014; 69(11):2252-7. PubMed ID: 24901619
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Floatation of granular sludge and its mechanism: a key approach for high-rate denitrifying reactor.
    Li W; Zheng P; Ji J; Zhang M; Guo J; Zhang J; Abbas G
    Bioresour Technol; 2014; 152():414-9. PubMed ID: 24316483
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nitrogen removal in a combined aerobic granular sludge and solid-phase biological denitrification system: System evaluation and community structure.
    Liu Y; Wei D; Xu W; Feng R; Du B; Wei Q
    Bioresour Technol; 2019 Sep; 288():121504. PubMed ID: 31128539
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Removal of residual dissolved methane gas in an upflow anaerobic sludge blanket reactor treating low-strength wastewater at low temperature with degassing membrane.
    Bandara WM; Satoh H; Sasakawa M; Nakahara Y; Takahashi M; Okabe S
    Water Res; 2011 May; 45(11):3533-40. PubMed ID: 21550096
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Automatic control strategy for step feed anoxic/aerobic biological nitrogen removal process.
    Zhu GB; Peng YZ; Wu SY; Wang SY
    J Environ Sci (China); 2005; 17(3):457-9. PubMed ID: 16083124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.