BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1150 related articles for article (PubMed ID: 30300939)

  • 1. In Situ/Operando X-ray Spectroscopies for Advanced Investigation of Energy Materials.
    Dong CL; Vayssieres L
    Chemistry; 2018 Dec; 24(69):18356-18373. PubMed ID: 30300939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.
    Gao W; Hood ZD; Chi M
    Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-Situ/Operando X-ray Characterization of Metal Hydrides.
    Liu YS; Jeong S; White JL; Feng X; Seon Cho E; Stavila V; Allendorf MD; Urban JJ; Guo J
    Chemphyschem; 2019 May; 20(10):1261-1271. PubMed ID: 30737862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial properties in energy storage systems studied by soft x-ray absorption spectroscopy and resonant inelastic x-ray scattering.
    Li Q; Yan S; Yang W
    J Chem Phys; 2020 Apr; 152(14):140901. PubMed ID: 32295356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Operando Photo-Electrochemical Catalysts Synchrotron Studies.
    Soldatov MA; Medvedev PV; Roldugin V; Novomlinskiy IN; Pankin I; Su H; Liu Q; Soldatov AV
    Nanomaterials (Basel); 2022 Mar; 12(5):. PubMed ID: 35269331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy.
    Stoerzinger KA; Hong WT; Crumlin EJ; Bluhm H; Shao-Horn Y
    Acc Chem Res; 2015 Nov; 48(11):2976-83. PubMed ID: 26305627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries.
    Lin F; Liu Y; Yu X; Cheng L; Singer A; Shpyrko OG; Xin HL; Tamura N; Tian C; Weng TC; Yang XQ; Meng YS; Nordlund D; Yang W; Doeff MM
    Chem Rev; 2017 Nov; 117(21):13123-13186. PubMed ID: 28960962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Element-specific characterization of transient electronic structure of solvated Fe(II) complexes with time-resolved soft X-ray absorption spectroscopy.
    Hong K; Cho H; Schoenlein RW; Kim TK; Huse N
    Acc Chem Res; 2015 Nov; 48(11):2957-66. PubMed ID: 26488127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advancements in Liquid Jet Technology and X-ray Spectroscopy for Understanding Energy Conversion Materials during Operation.
    Reuss T; Nair Lalithambika SS; David C; Döring F; Jooss C; Risch M; Techert S
    Acc Chem Res; 2023 Feb; 56(3):203-214. PubMed ID: 36636991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchrotron soft X-ray absorption spectroscopy study of carbon and silicon nanostructures for energy applications.
    Zhong J; Zhang H; Sun X; Lee ST
    Adv Mater; 2014 Dec; 26(46):7786-806. PubMed ID: 25204894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent progress on synchrotron-based in-situ soft X-ray spectroscopy for energy materials.
    Liu X; Yang W; Liu Z
    Adv Mater; 2014 Dec; 26(46):7710-29. PubMed ID: 24799004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure- and Electrolyte-Sensitivity in CO
    Arán-Ais RM; Gao D; Roldan Cuenya B
    Acc Chem Res; 2018 Nov; 51(11):2906-2917. PubMed ID: 30335937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray Spectroscopy at the SuperXAS and Debye Beamlines: from in situ to Operando.
    Bugaev A; Clark AH; Genz NS; Safonova OV; Smolentsev G; Nachtegaal M
    Chimia (Aarau); 2024 May; 78(5):304-312. PubMed ID: 38822773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-situ observations of catalytic surface reactions with soft x-rays under working conditions.
    Toyoshima R; Kondoh H
    J Phys Condens Matter; 2015 Mar; 27(8):083003. PubMed ID: 25667354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracking the Oxygen Dynamics of Solid-Liquid Electrochemical Interfaces by Correlative In Situ Synchrotron Spectroscopies.
    Cheng W; Su H; Liu Q
    Acc Chem Res; 2022 Jul; 55(14):1949-1959. PubMed ID: 35801353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing electrode/electrolyte interfaces in situ by X-ray spectroscopies: old methods, new tricks.
    Wu CH; Weatherup RS; Salmeron MB
    Phys Chem Chem Phys; 2015 Nov; 17(45):30229-39. PubMed ID: 26514115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding Synthesis and Structural Variation of Nanomaterials Through In Situ/Operando XAS and SAXS.
    Fang L; Seifert S; Winans RE; Li T
    Small; 2022 May; 18(19):e2106017. PubMed ID: 35142037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ambient Pressure Hard X-ray Photoelectron Spectroscopy for Functional Material Systems as Fuel Cells under Working Conditions.
    Takagi Y; Uruga T; Tada M; Iwasawa Y; Yokoyama T
    Acc Chem Res; 2018 Mar; 51(3):719-727. PubMed ID: 29509021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Operando X-ray spectroscopic observations of modulations of local atomic and electronic structures of color switching smart film.
    Lu YR; Wu TZ; Chang HW; Chen JL; Chen CL; Wei DH; Chen JM; Chou WC; Dong CL
    Phys Chem Chem Phys; 2017 Jun; 19(22):14224-14229. PubMed ID: 28443870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Operando x-ray photoelectron emission microscopy for studying forward and reverse biased silicon p-n junctions.
    Barrett N; Gottlob DM; Mathieu C; Lubin C; Passicousset J; Renault O; Martinez E
    Rev Sci Instrum; 2016 May; 87(5):053703. PubMed ID: 27250431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 58.