These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1141 related articles for article (PubMed ID: 30300939)

  • 21. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-pressure studies with x-rays using diamond anvil cells.
    Shen G; Mao HK
    Rep Prog Phys; 2017 Jan; 80(1):016101. PubMed ID: 27873767
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater.
    Chowdhury S; Balasubramanian R
    Adv Colloid Interface Sci; 2014 Feb; 204():35-56. PubMed ID: 24412086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical mapping and quantification at the atomic scale by scanning transmission electron microscopy.
    Chu MW; Chen CH
    ACS Nano; 2013 Jun; 7(6):4700-7. PubMed ID: 23799301
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In situ electrochemical synchrotron radiation for Li-ion batteries.
    Alemu T; Wang FM
    J Synchrotron Radiat; 2018 Jan; 25(Pt 1):151-165. PubMed ID: 29271765
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent Progress on In Situ/Operando Characterization of Rechargeable Alkali Ion Batteries.
    Sun Z; Zhang Y; Liu Y; Hou L; Yuan C
    Chempluschem; 2021 Oct; 86(10):1487-1496. PubMed ID: 34674379
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Review of Recent Development of In Situ/Operando Characterization Techniques for Lithium Battery Research.
    Liu D; Shadike Z; Lin R; Qian K; Li H; Li K; Wang S; Yu Q; Liu M; Ganapathy S; Qin X; Yang QH; Wagemaker M; Kang F; Yang XQ; Li B
    Adv Mater; 2019 Jul; 31(28):e1806620. PubMed ID: 31099081
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Review of the U.S. Department of Energy's "deep dive" effort to understand voltage fade in Li- and Mn-rich cathodes.
    Croy JR; Balasubramanian M; Gallagher KG; Burrell AK
    Acc Chem Res; 2015 Nov; 48(11):2813-21. PubMed ID: 26451674
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In Situ Transmission Electron Microscopy for Energy Materials and Devices.
    Fan Z; Zhang L; Baumann D; Mei L; Yao Y; Duan X; Shi Y; Huang J; Huang Y; Duan X
    Adv Mater; 2019 Aug; 31(33):e1900608. PubMed ID: 31183914
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In Operando Monitoring of the Pore Dynamics in Ordered Mesoporous Electrode Materials by Small Angle X-ray Scattering.
    Park GO; Yoon J; Park E; Park SB; Kim H; Kim KH; Jin X; Shin TJ; Kim H; Yoon WS; Kim JM
    ACS Nano; 2015 May; 9(5):5470-7. PubMed ID: 25869353
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Atomic and electronic structures of interfaces in dye-sensitized, nanostructured solar cells.
    Johansson EM; Lindblad R; Siegbahn H; Hagfeldt A; Rensmo H
    Chemphyschem; 2014 Apr; 15(6):1006-17. PubMed ID: 24692317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface/Interfacial Engineering of Inorganic Low-Dimensional Electrode Materials for Electrocatalysis.
    Chen P; Tong Y; Wu C; Xie Y
    Acc Chem Res; 2018 Nov; 51(11):2857-2866. PubMed ID: 30375850
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Soft x-ray spectroscopies in liquids and at solid-liquid interface at BACH beamline at Elettra.
    Nappini S; D'Amario L; Favaro M; Dal Zilio S; Salvador F; Betz-Güttner E; Fondacaro A; Píš I; Romanzin L; Gambitta A; Bondino F; Lazzarino M; Magnano E
    Rev Sci Instrum; 2021 Jan; 92(1):015115. PubMed ID: 33514239
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterizing electronic and atomic structures for amorphous and molecular metal oxide catalysts at functional interfaces by combining soft X-ray spectroscopy and high-energy X-ray scattering.
    Tiede DM; Kwon G; He X; Mulfort KL; Martinson ABF
    Nanoscale; 2020 Jul; 12(25):13276-13296. PubMed ID: 32567636
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Importance and Challenges of Electrochemical in Situ Liquid Cell Electron Microscopy for Energy Conversion Research.
    Hodnik N; Dehm G; Mayrhofer KJ
    Acc Chem Res; 2016 Sep; 49(9):2015-22. PubMed ID: 27541965
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Elemental-sensitive Detection of the Chemistry in Batteries through Soft X-ray Absorption Spectroscopy and Resonant Inelastic X-ray Scattering.
    Wu J; Sallis S; Qiao R; Li Q; Zhuo Z; Dai K; Guo Z; Yang W
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29733322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variable Temperature and Pressure Operando MAS NMR for Catalysis Science and Related Materials.
    Jaegers NR; Mueller KT; Wang Y; Hu JZ
    Acc Chem Res; 2020 Mar; 53(3):611-619. PubMed ID: 31927984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 58.