These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 30301175)

  • 1. Simultaneous Enhancement of Mechanical and Magnetic Properties in Extremely-Fine Nanograined Ni-P Alloys.
    He Q; Zhu W; Fu X; Zhang L; Wu G; Huang X
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30301175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Achieving Ultrahigh Hardness in Electrodeposited Nanograined Ni-Based Binary Alloys.
    Zheng X; Hu J; Li J; Shi Y
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30987281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grain boundary stability governs hardening and softening in extremely fine nanograined metals.
    Hu J; Shi YN; Sauvage X; Sha G; Lu K
    Science; 2017 Mar; 355(6331):1292-1296. PubMed ID: 28336664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulse Electrodeposited Ni-26 at. %Mo-A Crossover from Nanocrystalline to Amorphous.
    Li J; Shi Y; Li X
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33803394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size Dependence of Grain Boundary Migration in Metals under Mechanical Loading.
    Zhou X; Li X; Lu K
    Phys Rev Lett; 2019 Mar; 122(12):126101. PubMed ID: 30978032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dislocation exhaustion and ultra-hardening of nanograined metals by phase transformation at grain boundaries.
    Wu S; Kou Z; Lai Q; Lan S; Katnagallu SS; Hahn H; Taheriniya S; Wilde G; Gleiter H; Feng T
    Nat Commun; 2022 Sep; 13(1):5468. PubMed ID: 36115860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The W alloying effect on thermal stability and hardening of nanostructured Cu-W alloyed thin films.
    Zhao JT; Zhang JY; Hou ZQ; Wu K; Feng XB; Liu G; Sun J
    Nanotechnology; 2018 May; 29(19):195705. PubMed ID: 29469813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grain boundary segregation and interdiffusion effects in nickel-copper alloys: an effective means to improve the thermal stability of nanocrystalline nickel.
    Pellicer E; Varea A; Sivaraman KM; Pané S; Suriñach S; Baró MD; Nogués J; Nelson BJ; Sort J
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2265-74. PubMed ID: 21667966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Development of Stable Nanocrystalline High-Entropy Alloy: Coupling Self-Stabilization and Solute Grain Boundary Segregation Effects.
    Adaan-Nyiak MA; Alam I; Jossou E; Hwang S; Kisslinger K; Gill SK; Tiamiyu AA
    Small; 2024 Jul; 20(27):e2309631. PubMed ID: 38312106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical Prediction of Strengthening in Nanocrystalline Cu with Multi-Element Grain Boundary Segregation Decoration.
    Guo F; Li C; Fu T; Peng X
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Influence of Annealing on the Structural and Soft Magnetic Properties of (Fe
    Zhu M; Fa Y; Yao L; Tao P; Jian Z; Chang F
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30400181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new approach to grain boundary engineering for nanocrystalline materials.
    Kobayashi S; Tsurekawa S; Watanabe T
    Beilstein J Nanotechnol; 2016; 7():1829-1849. PubMed ID: 28144533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radioactive isotopes reveal a non sluggish kinetics of grain boundary diffusion in high entropy alloys.
    Vaidya M; Pradeep KG; Murty BS; Wilde G; Divinski SV
    Sci Rep; 2017 Sep; 7(1):12293. PubMed ID: 28947771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linking stress-driven microstructural evolution in nanocrystalline aluminium with grain boundary doping of oxygen.
    He MR; Samudrala SK; Kim G; Felfer PJ; Breen AJ; Cairney JM; Gianola DS
    Nat Commun; 2016 Apr; 7():11225. PubMed ID: 27071458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetization controlled by crystallization in soft magnetic Fe-Si-B-P-Cu alloys.
    Nakajima H; Osako A; Yodoshi N; Yamada Y; Tsukasaki H; Harada K; Sakai Y; Shigematsu K; Nishikubo T; Azuma M; Mori S
    Microscopy (Oxf); 2023 Aug; 72(4):274-278. PubMed ID: 35997566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on the Hydrogen Embrittlement of Nanograined Materials with Different Grain Sizes by Atomistic Simulation.
    Li J; Wu Z; Wang F; Zhang L; Zhou C; Lu C; Teng L; Lin Q
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Mo Segregation at Grain Boundaries on the High Temperature Creep Behavior of Ni-Mo Alloys: An Atomistic Study.
    Li Q; Zhang J; Tang H; Zhang H; Ye H; Zheng Y
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibiting creep in nanograined alloys with stable grain boundary networks.
    Zhang BB; Tang YG; Mei QS; Li XY; Lu K
    Science; 2022 Nov; 378(6620):659-663. PubMed ID: 36356141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Mechanical and Biological Performance of an Extremely Fine Nanograined 316L Stainless Steel Cell-Substrate Interface Fabricated by Ultrasonic Shot Peening.
    Yin F; Xu R; Hu S; Zhao K; Yang S; Kuang S; Li Q; Han Q
    ACS Biomater Sci Eng; 2018 May; 4(5):1609-1621. PubMed ID: 33445318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the Ni/Co Mass Ratio on the Microstructure and Properties of Quaternary Cu-Ni-Co-Si Alloys.
    Li J; Huang G; Mi X; Peng L; Xie H; Kang Y
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31487928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.