BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 3030164)

  • 1. Energy metabolism in canine erythrocytes associated with inherited high Na+- and K+-stimulated adenosine triphosphatase activity.
    Maede Y; Inaba M
    Am J Vet Res; 1987 Jan; 48(1):114-8. PubMed ID: 3030164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of Na,K-ATPase activity reduces Babesia gibsoni infection of canine erythrocytes with inherited high K, low Na concentrations.
    Yamasaki M; Takada A; Yamato O; Maede Y
    J Parasitol; 2005 Dec; 91(6):1287-92. PubMed ID: 16539007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects and mechanisms of action of ionophorous antibiotics valinomycin and salinomycin-Na on Babesia gibsoni in vitro.
    Yamasaki M; Nakamura K; Tamura N; Hwang SJ; Yoshikawa M; Sasaki N; Ohta H; Yamato O; Maede Y; Takiguchi M
    J Parasitol; 2009 Dec; 95(6):1532-8. PubMed ID: 20929429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methemoglobin formation and reduction in canine erythrocytes characterized by inherited high Na+, K(+)-ATPase activity with normal and high glutathione concentrations.
    Ogawa E; Horii Y; Honda M; Takahashi R
    J Vet Med Sci; 1994 Oct; 56(5):873-7. PubMed ID: 7865586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variant of canine erythrocytes with high potassium content and lack of glutathione accumulation.
    Fujise H; Mori M; Ogawa E; Maede Y
    Am J Vet Res; 1993 Apr; 54(4):602-6. PubMed ID: 8097905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. L-sorbose does not cause hemolysis in dog erythrocytes with inherited high Na, K-ATPase activity.
    Goto I; Shimizu T; Maede Y
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1992 Apr; 101(3):657-60. PubMed ID: 1354145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Relation between energy metabolism, Na+ and K+ levels, and Na,K-ATPase activity in erythrocytes and their volume and shape during overheating].
    Bondarev DP; Kozlov NB
    Vopr Med Khim; 1988; 34(5):87-91. PubMed ID: 2851213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage.
    McCarter FD; James JH; Luchette FA; Wang L; Friend LA; King JK; Evans JM; George MA; Fischer JE
    J Surg Res; 2001 Aug; 99(2):235-44. PubMed ID: 11469892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel reductions in stomatin and Na,K-ATPase through the exosomal pathway during reticulocyte maturation in dogs: stomatin as a genotypic and phenotypic marker of high K(+) and low K(+) red cells.
    Komatsu T; Sato K; Otsuka Y; Arashiki N; Tanaka K; Tamahara S; Ono K; Inaba M
    J Vet Med Sci; 2010 Jul; 72(7):893-901. PubMed ID: 20215716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects and mechanisms of action of polyene macrolide antibiotic nystatin on Babesia gibsoni in vitro.
    Yamasaki M; Tamura N; Nakamura K; Sasaki N; Murakami M; Rajapakshage W; Kumara B; Tamura Y; Lim SY; Ohta H; Takiguchi M
    J Parasitol; 2011 Dec; 97(6):1190-2. PubMed ID: 21756054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Several cation transporters and volume regulation in high-K dog red blood cells.
    Fujise H; Yamada I; Masuda M; Miyazawa Y; Ogawa E; Takahashi R
    Am J Physiol; 1991 Mar; 260(3 Pt 1):C589-97. PubMed ID: 1848403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Intensity of glycolysis and energy metabolism in erythrocytes in experimental hypervitaminosis A].
    Kriukova LV; Grozina AA; Kamaeva SI
    Vopr Med Khim; 1976; 22(5):640-2. PubMed ID: 138257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymic diversification of the sodium pump in sheep red cells.
    Blostein R; Drapeau P; Benderoff S; Weigensberg A
    Prog Clin Biol Res; 1981; 56():35-55. PubMed ID: 6276885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methemoglobin formation and reduction in canine erythrocytes with inherited high Na,K-ATPase activity.
    Ogawa E; Nagaoka A; Fujise H; Takahashi R
    Nihon Juigaku Zasshi; 1989 Dec; 51(6):1185-92. PubMed ID: 2557475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy metabolism of reticulocytes: two different sources of energy for Na+K(+)-ATPase activity.
    Kostić MM; Zivković RV
    Cell Biochem Funct; 1994 Jun; 12(2):107-12. PubMed ID: 8044886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hereditary high-potassium erythrocytes with high Na, K-ATPase activity in Japanese shiba dogs.
    Maede Y; Amano Y; Nishida A; Murase T; Sasaki A; Inaba M
    Res Vet Sci; 1991 Jan; 50(1):123-5. PubMed ID: 1646472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Quantitative model of human erythrocyte glycolysis. Relationship between erythrocyte energy metabolism and Na+, K+-ATPase activity].
    Ataullakhanov FI; Vitvitskiĭ VM; Zhabotinskiĭ AM; Kholodenko BN; Erlikh LI
    Biofizika; 1979; 24(3):489-94. PubMed ID: 223657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interaction of monovalent cations with the sodium pump of low-potassium goat erythrocytes.
    Cavieres JD; Ellory JC
    J Physiol; 1977 Sep; 271(1):289-318. PubMed ID: 144181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutant Phe788 --> Leu of the Na+,K+-ATPase is inhibited by micromolar concentrations of potassium and exhibits high Na+-ATPase activity at low sodium concentrations.
    Vilsen B
    Biochemistry; 1999 Aug; 38(35):11389-400. PubMed ID: 10471289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. (Na,K)-ATPase and Ouabain binding in reticulocytes from dogs with high K and low K erythrocytes and their changes during maturation.
    Maede Y; Inaba M
    J Biol Chem; 1985 Mar; 260(6):3337-43. PubMed ID: 2982856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.