These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 30301774)

  • 1. A Musashi Splice Variant and Its Interaction Partners Influence Temperature Acclimation in
    Li W; Flores DC; Füßel J; Euteneuer J; Dathe H; Zou Y; Weisheit W; Wagner V; Petersen J; Mittag M
    Plant Physiol; 2018 Dec; 178(4):1489-1506. PubMed ID: 30301774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel interaction of two clock-relevant RNA-binding proteins C3 and XRN1 in Chlamydomonas reinhardtii.
    Dathe H; Prager K; Mittag M
    FEBS Lett; 2012 Nov; 586(22):3969-73. PubMed ID: 23068615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Both subunits of the circadian RNA-binding protein CHLAMY1 can integrate temperature information.
    Voytsekh O; Seitz SB; Iliev D; Mittag M
    Plant Physiol; 2008 Aug; 147(4):2179-93. PubMed ID: 18567830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A heteromeric RNA-binding protein is involved in maintaining acrophase and period of the circadian clock.
    Iliev D; Voytsekh O; Schmidt EM; Fiedler M; Nykytenko A; Mittag M
    Plant Physiol; 2006 Oct; 142(2):797-806. PubMed ID: 16920878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-binding protein DUS16 plays an essential role in primary miRNA processing in the unicellular alga Chlamydomonas reinhardtii.
    Yamasaki T; Onishi M; Kim EJ; Cerutti H; Ohama T
    Proc Natl Acad Sci U S A; 2016 Sep; 113(38):10720-5. PubMed ID: 27582463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of an E-box element: multiple frunctions and interacting partners.
    Seitz SB; Voytsekh O; Mohan KM; Mittag M
    Plant Signal Behav; 2010 Sep; 5(9):1077-80. PubMed ID: 20818183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An inorganic carbon transport system responsible for acclimation specific to air levels of CO2 in Chlamydomonas reinhardtii.
    Wang Y; Spalding MH
    Proc Natl Acad Sci U S A; 2006 Jun; 103(26):10110-5. PubMed ID: 16777959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of a solute carrier, CIA8, involved in inorganic carbon acclimation in Chlamydomonas reinhardtii.
    Machingura MC; Bajsa-Hirschel J; Laborde SM; Schwartzenburg JB; Mukherjee B; Mukherjee A; Pollock SV; Förster B; Price GD; Moroney JV
    J Exp Bot; 2017 Jun; 68(14):3879-3890. PubMed ID: 28633328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nucleosome assembly protein-like polypeptide binds to chloroplast group II intron RNA in Chlamydomonas reinhardtii.
    Glanz S; Bunse A; Wimbert A; Balczun C; Kück U
    Nucleic Acids Res; 2006; 34(18):5337-51. PubMed ID: 17012281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acclimation of the photosynthetic machinery to high temperature in Chlamydomonas reinhardtii requires synthesis de novo of proteins encoded by the nuclear and chloroplast genomes.
    Tanaka Y; Nishiyama Y; Murata N
    Plant Physiol; 2000 Sep; 124(1):441-9. PubMed ID: 10982457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An intermolecular disulfide-based light switch for chloroplast psbD gene expression in Chlamydomonas reinhardtii.
    Schwarz C; Bohne AV; Wang F; Cejudo FJ; Nickelsen J
    Plant J; 2012 Nov; 72(3):378-89. PubMed ID: 22725132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ccm1, a regulatory gene controlling the induction of a carbon-concentrating mechanism in Chlamydomonas reinhardtii by sensing CO2 availability.
    Fukuzawa H; Miura K; Ishizaki K; Kucho KI; Saito T; Kohinata T; Ohyama K
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5347-52. PubMed ID: 11287669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraflagellar transport in the unicellular green alga, Chlamydomonas reinhardtii.
    Cole DG
    Protist; 2003 Jul; 154(2):181-91. PubMed ID: 13677447
    [No Abstract]   [Full Text] [Related]  

  • 14. Insights into the acclimation of Chlamydomonas reinhardtii to sulfur deprivation.
    Pollock SV; Pootakham W; Shibagaki N; Moseley JL; Grossman AR
    Photosynth Res; 2005 Dec; 86(3):475-89. PubMed ID: 16307308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of carbon assimilation modes with photosynthetic light capture in the green alga Chlamydomonas reinhardtii.
    Berger H; Blifernez-Klassen O; Ballottari M; Bassi R; Wobbe L; Kruse O
    Mol Plant; 2014 Oct; 7(10):1545-59. PubMed ID: 25038233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CSL encodes a leucine-rich-repeat protein implicated in red/violet light signaling to the circadian clock in Chlamydomonas.
    Kinoshita A; Niwa Y; Onai K; Yamano T; Fukuzawa H; Ishiura M; Matsuo T
    PLoS Genet; 2017 Mar; 13(3):e1006645. PubMed ID: 28333924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The circadian clock of the unicellular eukaryotic model organism Chlamydomonas reinhardtii.
    Mittag M; Wagner V
    Biol Chem; 2003 May; 384(5):689-95. PubMed ID: 12817465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Introducing an algal carbon-concentrating mechanism into higher plants: location and incorporation of key components.
    Atkinson N; Feike D; Mackinder LC; Meyer MT; Griffiths H; Jonikas MC; Smith AM; McCormick AJ
    Plant Biotechnol J; 2016 May; 14(5):1302-15. PubMed ID: 26538195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon Supply and Photoacclimation Cross Talk in the Green Alga Chlamydomonas reinhardtii.
    Polukhina I; Fristedt R; Dinc E; Cardol P; Croce R
    Plant Physiol; 2016 Nov; 172(3):1494-1505. PubMed ID: 27637747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The function of circadian RNA-binding proteins and their cis-acting elements in microalgae.
    Mittag M
    Chronobiol Int; 2003 Jul; 20(4):529-41. PubMed ID: 12916711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.