These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. In vivo imaging of tumor physiological, metabolic, and redox changes in response to the anti-angiogenic agent sunitinib: longitudinal assessment to identify transient vascular renormalization. Matsumoto S; Saito K; Takakusagi Y; Matsuo M; Munasinghe JP; Morris HD; Lizak MJ; Merkle H; Yasukawa K; Devasahayam N; Suburamanian S; Mitchell JB; Krishna MC Antioxid Redox Signal; 2014 Sep; 21(8):1145-55. PubMed ID: 24597714 [TBL] [Abstract][Full Text] [Related]
4. Longitudinal imaging studies of tumor microenvironment in mice treated with the mTOR inhibitor rapamycin. Saito K; Matsumoto S; Yasui H; Devasahayam N; Subramanian S; Munasinghe JP; Patel V; Gutkind JS; Mitchell JB; Krishna MC PLoS One; 2012; 7(11):e49456. PubMed ID: 23185335 [TBL] [Abstract][Full Text] [Related]
5. Thalidomide radiosensitizes tumors through early changes in the tumor microenvironment. Ansiaux R; Baudelet C; Jordan BF; Beghein N; Sonveaux P; De Wever J; Martinive P; Grégoire V; Feron O; Gallez B Clin Cancer Res; 2005 Jan; 11(2 Pt 1):743-50. PubMed ID: 15701864 [TBL] [Abstract][Full Text] [Related]
6. The relationship between partial pressure of oxygen and perfusion in two murine tumors after X-ray irradiation: a combined gadopentetate dimeglumine dynamic magnetic resonance imaging and in vivo electron paramagnetic resonance oximetry study. Goda F; Bacic G; O'Hara JA; Gallez B; Swartz HM; Dunn JF Cancer Res; 1996 Jul; 56(14):3344-9. PubMed ID: 8764132 [TBL] [Abstract][Full Text] [Related]
7. Magnetic resonance imaging-based detection of glial brain tumors in mice after antiangiogenic treatment. Claes A; Gambarota G; Hamans B; van Tellingen O; Wesseling P; Maass C; Heerschap A; Leenders W Int J Cancer; 2008 May; 122(9):1981-6. PubMed ID: 18081012 [TBL] [Abstract][Full Text] [Related]
8. Continuous monitoring of postirradiation reoxygenation and cycling hypoxia using electron paramagnetic resonance imaging. Kawai T; Matsuo M; Takakusagi Y; Saito K; Hyodo F; Devasahayam N; Matsumoto S; Kishimoto S; Yasui H; Yamamoto K; Krishna MC NMR Biomed; 2022 Oct; 35(10):e4783. PubMed ID: 35661282 [TBL] [Abstract][Full Text] [Related]
9. Radiosensitizing oxygenation changes in murine tumors treated with VEGF-ablation therapy are measurable using oxygen enhanced-MRI (OE-MRI). Baker JHE; Moosvi F; Kyle AH; Püspöky Banáth J; Saatchi K; Häfeli UO; Reinsberg SA; Minchinton AI Radiother Oncol; 2023 Oct; 187():109795. PubMed ID: 37414252 [TBL] [Abstract][Full Text] [Related]
10. Evaluations of an Early Change in Tumor Pathophysiology in Response to Radiotherapy with Oxygen Enhanced Electron Paramagnetic Resonance Imaging (OE EPRI). Li T; Murley GA; Liang X; Chin RL; de la Cerda J; Schuler FW; Pagel MD Mol Imaging Biol; 2024 Jun; 26(3):448-458. PubMed ID: 38869818 [TBL] [Abstract][Full Text] [Related]
12. Gadopentetate dimeglumine versus ultrasmall superparamagnetic iron oxide for dynamic contrast-enhanced MR imaging of tumor angiogenesis in human colon carcinoma in mice. de Lussanet QG; Backes WH; Griffioen AW; van Engelshoven JM; Beets-Tan RG Radiology; 2003 Nov; 229(2):429-38. PubMed ID: 14595147 [TBL] [Abstract][Full Text] [Related]
13. 3D modeling of effects of increased oxygenation and activity concentration in tumors treated with radionuclides and antiangiogenic drugs. Lagerlöf JH; Kindblom J; Bernhardt P Med Phys; 2011 Aug; 38(8):4888-93. PubMed ID: 21928660 [TBL] [Abstract][Full Text] [Related]
14. Tumor radiosensitization by antiinflammatory drugs: evidence for a new mechanism involving the oxygen effect. Crokart N; Radermacher K; Jordan BF; Baudelet C; Cron GO; Grégoire V; Beghein N; Bouzin C; Feron O; Gallez B Cancer Res; 2005 Sep; 65(17):7911-6. PubMed ID: 16140962 [TBL] [Abstract][Full Text] [Related]
15. Radiotherapy in conjunction with 7-hydroxystaurosporine: a multimodal approach with tumor pO2 as a potential marker of therapeutic response. Khan N; Mupparaju SP; Hou H; Lariviere JP; Demidenko E; Swartz HM; Eastman A Radiat Res; 2009 Nov; 172(5):592-7. PubMed ID: 19883227 [TBL] [Abstract][Full Text] [Related]
16. Preferential action of arsenic trioxide in solid-tumor microenvironment enhances radiation therapy. Griffin RJ; Williams BW; Park HJ; Song CW Int J Radiat Oncol Biol Phys; 2005 Apr; 61(5):1516-22. PubMed ID: 15817358 [TBL] [Abstract][Full Text] [Related]
17. Development of Bifunctional Gadolinium-Labeled Superparamagnetic Nanoparticles (Gd-MnMEIO) for In Vivo MR Imaging of the Liver in an Animal Model. Kuo YT; Chen CY; Liu GC; Wang YM PLoS One; 2016; 11(2):e0148695. PubMed ID: 26886558 [TBL] [Abstract][Full Text] [Related]
18. αvß3-Integrin-Targeted Magnetic Resonance Imaging for the Assessment of Early Antiangiogenic Therapy Effects in Orthotopic Breast Cancer Xenografts. Kazmierczak PM; Schneider M; Habereder T; Hirner-Eppeneder H; Eschbach RS; Moser M; Reiser MF; Lauber K; Nikolaou K; Cyran CC Invest Radiol; 2016 Nov; 51(11):746-755. PubMed ID: 27082316 [TBL] [Abstract][Full Text] [Related]
19. Oxygen Vacancies Enhanced CeO Shao C; Shen A; Zhang M; Meng X; Song C; Liu Y; Gao X; Wang P; Bu W ACS Nano; 2018 Dec; 12(12):12629-12637. PubMed ID: 30495921 [TBL] [Abstract][Full Text] [Related]
20. Increase in tumor oxygenation and potentiation of radiation effects using pentoxifylline, vinpocetine and ticlopidine hydrochloride. Amano M; Monzen H; Suzuki M; Terai K; Andoh S; Tsumuraya A; Hasegawa T J Radiat Res; 2005 Dec; 46(4):373-8. PubMed ID: 16394626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]