These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 3030194)

  • 1. Influence of dietary fiber on xylanolytic and cellulolytic bacteria of adult pigs.
    Varel VH; Robinson IM; Jung HJ
    Appl Environ Microbiol; 1987 Jan; 53(1):22-6. PubMed ID: 3030194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enumeration and activity of cellulolytic bacteria from gestating swine fed various levels of dietary fiber.
    Varel VH; Pond WG
    Appl Environ Microbiol; 1985 Apr; 49(4):858-62. PubMed ID: 2988439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity of fiber-degrading microorganisms in the pig large intestine.
    Varel VH
    J Anim Sci; 1987 Aug; 65(2):488-96. PubMed ID: 3040656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of dietary fiber on the performance and cellulase activity of growing-finishing swine.
    Varel VH; Pond WG; Yen JT
    J Anim Sci; 1984 Aug; 59(2):388-93. PubMed ID: 6090377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulolytic bacteria from pig large intestine.
    Varel VH; Fryda SJ; Robinson IM
    Appl Environ Microbiol; 1984 Jan; 47(1):219-21. PubMed ID: 6696420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gas-liquid chromatography for evaluating polysaccharide degradation by Ruminococcus flavefaciens C94 and Bacteroides succinogenes S85.
    Collings GF; Yokoyama MT
    Appl Environ Microbiol; 1980 Mar; 39(3):566-71. PubMed ID: 7189996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of dietary fiber of young adult genetically lean, obese and contemporary pigs: rate of passage, digestibility and microbiological data.
    Varel VH; Jung HG; Pond WG
    J Anim Sci; 1988 Mar; 66(3):707-12. PubMed ID: 2837445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of high-fiber diet on bacterial populations in gastrointestinal tracts of obese- and lean-genotype pigs.
    Varel VH; Pond WG; Pekas JC; Yen JT
    Appl Environ Microbiol; 1982 Jul; 44(1):107-12. PubMed ID: 6289744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enumeration and isolation of cellulolytic and hemicellulolytic bacteria from human feces.
    Wedekind KJ; Mansfield HR; Montgomery L
    Appl Environ Microbiol; 1988 Jun; 54(6):1530-5. PubMed ID: 3415224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of forage phenolics on ruminal fibrolytic bacteria and in vitro fiber degradation.
    Varel VH; Jung HJ
    Appl Environ Microbiol; 1986 Aug; 52(2):275-80. PubMed ID: 16347127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postprandial changes of fiber-degrading microbes in the rumen of sheep fed diets varying in type of forage as monitored by real-time PCR and automated ribosomal intergenic spacer analysis.
    Saro C; Ranilla MJ; Carro MD
    J Anim Sci; 2012 Dec; 90(12):4487-94. PubMed ID: 23100580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ruminal cellulolytic bacteria and protozoa from bison, cattle-bison hybrids, and cattle fed three alfalfa-corn diets.
    Varel VH; Dehority BA
    Appl Environ Microbiol; 1989 Jan; 55(1):148-53. PubMed ID: 2705767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial perspective on fiber utilization by swine.
    Varel VH; Yen JT
    J Anim Sci; 1997 Oct; 75(10):2715-22. PubMed ID: 9331875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic and microbial responses in western crossbred and Meishan growing pigs fed a high-fiber diet.
    Yen JT; Varel VH; Nienaber JA
    J Anim Sci; 2004 Jun; 82(6):1740-55. PubMed ID: 15217002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the amount of dietary fiber on the available energy from hindgut fermentation in growing pigs: use of cannulated pigs and in vitro fermentation.
    Anguita M; Canibe N; PĂ©rez JF; Jensen BB
    J Anim Sci; 2006 Oct; 84(10):2766-78. PubMed ID: 16971578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Community structure and fibrolytic activities of anaerobic rumen fungi in dromedary camels.
    Rabee AE; Forster RJ; Elekwachi CO; Kewan KZ; Sabra EA; Shawket SM; Mahrous HA; Khamiss OA
    J Basic Microbiol; 2019 Jan; 59(1):101-110. PubMed ID: 30303547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between Treponema bryantii and cellulolytic bacteria in the in vitro degradation of straw cellulose.
    Kudo H; Cheng KJ; Costerton JW
    Can J Microbiol; 1987 Mar; 33(3):244-8. PubMed ID: 3567744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of diet on populations of three species of ruminal cellulolytic bacteria in lactating dairy cows.
    Weimer PJ; Waghorn GC; Odt CL; Mertens DR
    J Dairy Sci; 1999 Jan; 82(1):122-34. PubMed ID: 10022014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flaxseed meal and oat hulls supplementation: impact on predicted production and absorption of volatile fatty acids and energy from hindgut fermentation in growing pigs.
    Ndou SP; Kiarie E; Nyachoti CM
    J Anim Sci; 2019 Jan; 97(1):302-314. PubMed ID: 30321361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of feeding fiber-fermenting bacteria to pigs on nutrient digestion, fecal output, and plasma energy metabolites.
    Ziemer CJ; Kerr BJ; Weber TE; Arcidiacono S; Morrison M; Ragauskas A
    J Anim Sci; 2012 Nov; 90(11):4020-7. PubMed ID: 23148303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.