BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 30302020)

  • 21. Fourier transform infrared spectroscopy of developing bone mineral: from amorphous precursor to mature crystal.
    Querido W; Shanas N; Bookbinder S; Oliveira-Nunes MC; Krynska B; Pleshko N
    Analyst; 2020 Feb; 145(3):764-776. PubMed ID: 31755889
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation.
    Boonrungsiman S; Gentleman E; Carzaniga R; Evans ND; McComb DW; Porter AE; Stevens MM
    Proc Natl Acad Sci U S A; 2012 Aug; 109(35):14170-5. PubMed ID: 22879397
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microstructure and chemistry affects apatite nucleation on calcium phosphate bone graft substitutes.
    Campion CR; Ball SL; Clarke DL; Hing KA
    J Mater Sci Mater Med; 2013 Mar; 24(3):597-610. PubMed ID: 23242766
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanoscale confinement controls the crystallization of calcium phosphate: relevance to bone formation.
    Cantaert B; Beniash E; Meldrum FC
    Chemistry; 2013 Oct; 19(44):14918-24. PubMed ID: 24115275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation and transformation of calcium phosphates: relevance to vascular calcification.
    LeGeros RZ
    Z Kardiol; 2001; 90 Suppl 3():116-24. PubMed ID: 11374023
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of pH on the structural evolution of accelerated biomimetic apatite.
    Chou YF; Chiou WA; Xu Y; Dunn JC; Wu BM
    Biomaterials; 2004 Oct; 25(22):5323-31. PubMed ID: 15110483
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Osteoclastic resorption of biomimetic calcium phosphate coatings in vitro.
    Leeuwenburgh S; Layrolle P; Barrère F; de Bruijn J; Schoonman J; van Blitterswijk CA; de Groot K
    J Biomed Mater Res; 2001 Aug; 56(2):208-15. PubMed ID: 11340590
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age: 2. Investigations in the nu3PO4 domain.
    Rey C; Shimizu M; Collins B; Glimcher MJ
    Calcif Tissue Int; 1991 Dec; 49(6):383-8. PubMed ID: 1818762
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High resolution electron microscopy of nonstoichiometric apatite crystals.
    Nelson DG; Barry JC
    Anat Rec; 1989 Jun; 224(2):265-76. PubMed ID: 2672890
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Colloidal and monocrystalline Ln3+ doped apatite calcium phosphate as biocompatible fluorescent probes.
    Lebugle A; Pellé F; Charvillat C; Rousselot I; Chane-Ching JY
    Chem Commun (Camb); 2006 Feb; (6):606-8. PubMed ID: 16446824
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid.
    Takadama H; Kim HM; Kokubo T; Nakamura T
    J Biomed Mater Res; 2001 Dec; 57(3):441-8. PubMed ID: 11523039
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystallized nano-sized alpha-tricalcium phosphate from amorphous calcium phosphate: microstructure, cementation and cell response.
    Vecbiskena L; Gross KA; Riekstina U; Yang TC
    Biomed Mater; 2015 Apr; 10(2):025009. PubMed ID: 25886478
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solution growth of spherulitic rod and platelet calcium phosphate assemblies through polymer-assisted mesoscopic transformations.
    Kosma VA; Beltsios KG
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2175-91. PubMed ID: 23498246
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transmission electron microscopic study on setting mechanism of tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cement.
    Chen WC; Lin JH; Ju CP
    J Biomed Mater Res A; 2003 Mar; 64(4):664-71. PubMed ID: 12601778
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [A study of bone-like apatite formation on porous calcium phosphate ceramics in dynamic SBF].
    Duan Y; Yao Z; Wang C; Chen J; Zhang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Sep; 19(3):365-9. PubMed ID: 12557498
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On Grounds of the Memory Effect in Amorphous and Crystalline Apatite: Kinetics of Crystallization and Biological Response.
    Uskoković V; Tang S; Wu VM
    ACS Appl Mater Interfaces; 2018 May; 10(17):14491-14508. PubMed ID: 29625010
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of apatite formation by phosphorylated metabolites and macromolecules.
    Termine JD; Conn KM
    Calcif Tissue Res; 1976 Dec; 22(2):149-57. PubMed ID: 187288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cyclic silicate active site and stereochemical match for apatite nucleation on pseudowollastonite bioceramic-bone interfaces.
    Sahai N; Anseau M
    Biomaterials; 2005 Oct; 26(29):5763-70. PubMed ID: 15949543
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of apatite formation by vitronectin.
    Padrines M; Rohanizadeh R; Damiens C; Heymann D; Fortun Y
    Connect Tissue Res; 2000; 41(2):101-8. PubMed ID: 10992156
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bone resembling apatite by amorphous-to-crystalline transition driven self-organisation.
    Pekounov Y; Petrov OE
    J Mater Sci Mater Med; 2008 Feb; 19(2):753-9. PubMed ID: 17619976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.