These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 30302020)

  • 41. Bonelike apatite formation on niobium metal treated in aqueous NaOH.
    Godley R; Starosvetsky D; Gotman I
    J Mater Sci Mater Med; 2004 Oct; 15(10):1073-7. PubMed ID: 15516867
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The interaction of supersaturated calcium phosphate solutions with apatitic substrates.
    Eanes ED
    Calcif Tissue Res; 1976 Apr; 20(1):75-89. PubMed ID: 1260495
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biomimetic mineralisation of phosphorylated dentine by CPP-ACP.
    Cao Y; Mei ML; Xu J; Lo EC; Li Q; Chu CH
    J Dent; 2013 Sep; 41(9):818-25. PubMed ID: 23810733
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bone mineral crystallisation kinetics.
    Greenwood C; Rogers K; Beckett S; Clement J
    J Mater Sci Mater Med; 2012 Sep; 23(9):2055-60. PubMed ID: 22743865
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Apatite-forming ability of pure titanium implant after micro-arc oxidation treatment].
    Tian Z; Zhang Y; Wang L; Nan K
    Nan Fang Yi Ke Da Xue Xue Bao; 2013 Oct; 33(10):1554-6. PubMed ID: 24144769
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Morphology and microstructure of electrochemically deposited calcium phosphates in a modified simulated body fluid.
    Ban S; Maruno S
    Biomaterials; 1998 Jul; 19(14):1245-53. PubMed ID: 9720888
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of liquid phase on basic properties of alpha-tricalcium phosphate-based apatite cement.
    Oda M; Takeuchi A; Lin X; Matsuya S; Ishikawa K
    Dent Mater J; 2008 Sep; 27(5):672-7. PubMed ID: 18972783
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Surface potential change in bioactive titanium metal during the process of apatite formation in simulated body fluid.
    Kim HM; Himeno T; Kawashita M; Lee JH; Kokubo T; Nakamura T
    J Biomed Mater Res A; 2003 Dec; 67(4):1305-9. PubMed ID: 14624517
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays.
    Mahamid J; Aichmayer B; Shimoni E; Ziblat R; Li C; Siegel S; Paris O; Fratzl P; Weiner S; Addadi L
    Proc Natl Acad Sci U S A; 2010 Apr; 107(14):6316-21. PubMed ID: 20308589
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bone mineralization proceeds through intracellular calcium phosphate loaded vesicles: a cryo-electron microscopy study.
    Mahamid J; Sharir A; Gur D; Zelzer E; Addadi L; Weiner S
    J Struct Biol; 2011 Jun; 174(3):527-35. PubMed ID: 21440636
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modulation of apatite crystal growth on Bioglass by recombinant amelogenin.
    Wen HB; Moradian-Oldak J; Fincham AG
    Biomaterials; 1999 Sep; 20(18):1717-25. PubMed ID: 10503973
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of F- on apatite-octacalcium phosphate intergrowth and crystal morphology in a model system of tooth enamel formation.
    Iijima M; Tohda H; Suzuki H; Yanagisawa T; Moriwaki Y
    Calcif Tissue Int; 1992 Apr; 50(4):357-61. PubMed ID: 1571848
    [TBL] [Abstract][Full Text] [Related]  

  • 53. "Fabrication of arbitrarily shaped carbonate apatite foam based on the interlocking process of dicalcium hydrogen phosphate dihydrate".
    Sugiura Y; Tsuru K; Ishikawa K
    J Mater Sci Mater Med; 2017 Aug; 28(8):122. PubMed ID: 28689353
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modification of bone-like apatite nanoparticle size and growth kinetics by alizarin red S.
    Ibsen CJ; Birkedal H
    Nanoscale; 2010 Nov; 2(11):2478-86. PubMed ID: 20931127
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fabrication of bone cement that fully transforms to carbonate apatite.
    Cahyanto A; Maruta M; Tsuru K; Matsuya S; Ishikawa K
    Dent Mater J; 2015; 34(3):394-401. PubMed ID: 25948145
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dynamic study of calcium phosphate formation on porous HA/TCP ceramics.
    Duan YR; Zhang ZR; Wang CY; Chen JY; Zhang XD
    J Mater Sci Mater Med; 2005 Sep; 16(9):795-801. PubMed ID: 16167107
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparison of calcium phosphate glass ceramics with apatite ceramics implanted in bone. An interface study--II.
    Klein CP; Abe Y; Hosono H; de Groot K
    Biomaterials; 1987 May; 8(3):234-6. PubMed ID: 3300793
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Basic fibroblast growth factor adsorption and release properties of calcium phosphate.
    Midy V; Rey C; Bres E; Dard M
    J Biomed Mater Res; 1998 Sep; 41(3):405-11. PubMed ID: 9659610
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Critical and diverse roles of phosphates in human bone formation.
    Hughes EAB; Robinson TE; Bassett DB; Cox SC; Grover LM
    J Mater Chem B; 2019 Dec; 7(47):7460-7470. PubMed ID: 31729501
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural and chemical characteristics and maturation of the calcium-phosphate crystals formed during the calcification of the organic matrix synthesized by chicken osteoblasts in cell culture.
    Rey C; Kim HM; Gerstenfeld L; Glimcher MJ
    J Bone Miner Res; 1995 Oct; 10(10):1577-88. PubMed ID: 8686515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.