BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 30302389)

  • 21. Dopamine D1-dependent trafficking of striatal N-methyl-D-aspartate glutamate receptors requires Fyn protein tyrosine kinase but not DARPP-32.
    Dunah AW; Sirianni AC; Fienberg AA; Bastia E; Schwarzschild MA; Standaert DG
    Mol Pharmacol; 2004 Jan; 65(1):121-9. PubMed ID: 14722243
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dopamine D1/D2 Receptor Activity in the Nucleus Accumbens Core But Not in the Nucleus Accumbens Shell and Orbitofrontal Cortex Modulates Risk-Based Decision Making.
    Mai B; Sommer S; Hauber W
    Int J Neuropsychopharmacol; 2015 Apr; 18(10):pyv043. PubMed ID: 25908669
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Midbrain dopamine neurons encode decisions for future action.
    Morris G; Nevet A; Arkadir D; Vaadia E; Bergman H
    Nat Neurosci; 2006 Aug; 9(8):1057-63. PubMed ID: 16862149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Roles of hippocampal NMDA receptors and nucleus accumbens D1 receptors in the amphetamine-produced conditioned place preference in rats.
    Tan SE
    Brain Res Bull; 2008 Dec; 77(6):412-9. PubMed ID: 18929625
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Guidance of instrumental behavior under reversal conditions requires dopamine D1 and D2 receptor activation in the orbitofrontal cortex.
    Calaminus C; Hauber W
    Neuroscience; 2008 Jul; 154(4):1195-204. PubMed ID: 18538938
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dopamine receptors regulate preference between high-effort and high-risk rewards.
    Gabriel DBK; Liley AE; Freels TG; Simon NW
    Psychopharmacology (Berl); 2021 Apr; 238(4):991-1004. PubMed ID: 33410986
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dopamine signaling in reward-related behaviors.
    Baik JH
    Front Neural Circuits; 2013; 7():152. PubMed ID: 24130517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Loss of mu and delta opioid receptors on neurons expressing dopamine receptor D1 has no effect on reward sensitivity.
    Harda Z; Spyrka J; Jastrzębska K; Szumiec Ł; Bryksa A; Klimczak M; Polaszek M; Gołda S; Zajdel J; Misiołek K; Błasiak A; Rodriguez Parkitna J
    Neuropharmacology; 2020 Dec; 180():108307. PubMed ID: 32941853
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Group I metabotropic glutamate receptor antagonists impair discriminability of reinforcer magnitude, but not risky choice, in a probability-discounting task.
    Yates JR; Chitwood MR; Evans KE; Kappesser JL; Murray CP; Paradella-Bradley TA; Torline BT
    Behav Brain Res; 2019 Jun; 365():77-81. PubMed ID: 30831139
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dopamine D1 and NMDA receptors mediate potentiation of basolateral amygdala-evoked firing of nucleus accumbens neurons.
    Floresco SB; Blaha CD; Yang CR; Phillips AG
    J Neurosci; 2001 Aug; 21(16):6370-6. PubMed ID: 11487660
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dopaminergic modulation of risky decision-making.
    Simon NW; Montgomery KS; Beas BS; Mitchell MR; LaSarge CL; Mendez IA; Bañuelos C; Vokes CM; Taylor AB; Haberman RP; Bizon JL; Setlow B
    J Neurosci; 2011 Nov; 31(48):17460-70. PubMed ID: 22131407
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeting VGLUT2 in Mature Dopamine Neurons Decreases Mesoaccumbal Glutamatergic Transmission and Identifies a Role for Glutamate Co-release in Synaptic Plasticity by Increasing Baseline AMPA/NMDA Ratio.
    Papathanou M; Creed M; Dorst MC; Bimpisidis Z; Dumas S; Pettersson H; Bellone C; Silberberg G; Lüscher C; Wallén-Mackenzie Å
    Front Neural Circuits; 2018; 12():64. PubMed ID: 30210305
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distinct Roles of GluA2-lacking AMPA Receptor Expression in Dopamine D1 or D2 Receptor Neurons in Animal Behavior.
    Shou J; Tran A; Snyder N; Bleem E; Kim S
    Neuroscience; 2019 Feb; 398():102-112. PubMed ID: 30537522
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NMDA receptor deletion on dopamine neurons disrupts visual discrimination and reversal learning.
    Radke AK; Zweifel LS; Holmes A
    Neurosci Lett; 2019 Apr; 699():109-114. PubMed ID: 30726715
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Attenuating GABA(A) receptor signaling in dopamine neurons selectively enhances reward learning and alters risk preference in mice.
    Parker JG; Wanat MJ; Soden ME; Ahmad K; Zweifel LS; Bamford NS; Palmiter RD
    J Neurosci; 2011 Nov; 31(47):17103-12. PubMed ID: 22114279
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabotropic glutamate receptor 5 upregulates surface NMDA receptor expression in striatal neurons via CaMKII.
    Jin DZ; Xue B; Mao LM; Wang JQ
    Brain Res; 2015 Oct; 1624():414-423. PubMed ID: 26256252
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dopamine D1 receptor-mediated NMDA receptor insertion depends on Fyn but not Src kinase pathway in prefrontal cortical neurons.
    Hu JL; Liu G; Li YC; Gao WJ; Huang YQ
    Mol Brain; 2010 Jun; 3():20. PubMed ID: 20569495
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Opposite function of dopamine D1 and N-methyl-D-aspartate receptors in striatal cannabinoid-mediated signaling.
    Daigle TL; Wetsel WC; Caron MG
    Eur J Neurosci; 2011 Nov; 34(9):1378-89. PubMed ID: 22034973
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dissociable contributions by prefrontal D1 and D2 receptors to risk-based decision making.
    St Onge JR; Abhari H; Floresco SB
    J Neurosci; 2011 Jun; 31(23):8625-33. PubMed ID: 21653866
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential regulation of CaMKIIα interactions with mGluR5 and NMDA receptors by Ca(2+) in neurons.
    Jin DZ; Guo ML; Xue B; Mao LM; Wang JQ
    J Neurochem; 2013 Dec; 127(5):620-31. PubMed ID: 24032403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.