BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 3030276)

  • 1. Chemical modification of the haem propionate of cytochrome c. A re-evaluation of the reaction of cytochrome c with a water-soluble carbodi-imide.
    Mathews AJ; Brittain T
    Biochem J; 1986 Nov; 240(1):181-7. PubMed ID: 3030276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical modification of the haem propionate of cytochrome c.
    Timkovich R
    Biochem J; 1980 Jan; 185(1):47-57. PubMed ID: 6246879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Some reactions of carbon monoxide and oxygen with carbodi-imide-modified cytochrome c.
    Mathews AJ; Brittain T
    Biochem J; 1991 May; 276 ( Pt 1)(Pt 1):121-4. PubMed ID: 1645525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Some electron-transfer reactions involving carbodi-imide-modified cytochrome c.
    Mathews AJ; Brittain T
    Biochem J; 1987 Apr; 243(2):379-84. PubMed ID: 2820377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crosslinking of cytochrome c and cytochrome b5 with a water-soluble carbodiimide. Reaction conditions, product analysis and critique of the technique.
    Mauk MR; Mauk AG
    Eur J Biochem; 1989 Dec; 186(3):473-86. PubMed ID: 2558010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of a water-soluble carbodiimide to cross-link cytochrome c to plastocyanin.
    Geren LM; Stonehuerner J; Davis DJ; Millett F
    Biochim Biophys Acta; 1983 Jul; 724(1):62-8. PubMed ID: 6307354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of a water-soluble carbodiimide to study the interaction between Chromatium vinosum flavocytochrome c-552 and cytochrome c.
    Vieira B; Davidson M; Knaff D; Millett F
    Biochim Biophys Acta; 1986 Jan; 848(1):131-6. PubMed ID: 3002455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification and identification of glutamate residues at the arginine-recognition site in the catalytic subunit of adenosine 3' :5'-cyclic monophosphate-dependent protein kinase of rabbit skeletal muscle.
    Matsuo M; Huang C; Huang LC
    Biochem J; 1980 May; 187(2):371-9. PubMed ID: 6249267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical modification of Penicillium 1,2-alpha-D-mannosidase by water-soluble carbodi-imide: identification of a catalytically important aspartic acid residue.
    Yoshida T; Maeda K; Kobayashi M; Ichishima E
    Biochem J; 1994 Oct; 303 ( Pt 1)(Pt 1):97-103. PubMed ID: 7945271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different polypeptides of bovine heart cytochrome c oxidase are in contact with cytochrome c.
    Bisson R; Montecucco C
    FEBS Lett; 1982 Dec; 150(1):49-53. PubMed ID: 6297972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on the chemical modification and potato (Solanum tuberosum) lectin and its effect on haemagglutinating activity.
    Ashford D; Menon R; Allen AK; Neuberger A
    Biochem J; 1981 Nov; 199(2):399-408. PubMed ID: 7340810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural changes in photosystem II after treatment with the zero-length bifunctional cross-linker 1-ethyl-3-(3-dimethylaminopropyl)carbodi-imide: an electron microscopic study.
    Collins RF; Flint TD; Holzenburg A; Ford RC
    Biochem J; 1996 Oct; 319 ( Pt 2)(Pt 2):585-9. PubMed ID: 8912698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association of fibronectin with carboxy-group-modified proteins in vitro.
    Vuento M; Korkolainen M; Stenman UH
    Biochem J; 1982 Aug; 205(2):303-11. PubMed ID: 7138504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 13C NMR spectroscopic and X-ray crystallographic study of the role played by mitochondrial cytochrome b5 heme propionates in the electrostatic binding to cytochrome c.
    Rodríguez-Marañón MJ; Qiu F; Stark RE; White SP; Zhang X; Foundling SI; Rodríguez V; Schilling CL; Bunce RA; Rivera M
    Biochemistry; 1996 Dec; 35(50):16378-90. PubMed ID: 8973214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyanide reactivity of cytochrome c derivatives.
    Dyer C; Schubert A; Timkovich R; Feinberg BA
    Biochim Biophys Acta; 1979 Aug; 579(2):253-68. PubMed ID: 231457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium binding by human erythrocyte membranes. Significance of carboxyl, amino and thiol groups.
    Forstner J; Manery JF
    Biochem J; 1971 Nov; 125(1):343-52. PubMed ID: 5158916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing stability and dynamics of proteins by protease digestion. II: Identification of the initial chymotryptic cleavage sites of homologous cytochromes c.
    Miki Y; Endo S; Giga-Hama Y; Tanji M; Wada A
    J Biomol Struct Dyn; 1988 Aug; 6(1):1-21. PubMed ID: 2856033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Essential carboxy groups in xylanase A.
    Bray MR; Clarke AJ
    Biochem J; 1990 Aug; 270(1):91-6. PubMed ID: 2396996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-linking between cytochrome c3 and flavodoxin from Desulfovibrio gigas.
    Correia C; Monzani E; Moura I; Lampreia J; Moura JJ
    Biochem Biophys Res Commun; 1999 Mar; 256(2):367-71. PubMed ID: 10079190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbodi-imide coupling of enzymes to the reversibly soluble insoluble polymer Eudragit S-100.
    Tyagi R; Roy I; Agarwal R; Gupta MN
    Biotechnol Appl Biochem; 1998 Dec; 28 ( Pt 3)():201-6. PubMed ID: 9799717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.