These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30303768)

  • 1. A novel bagging ensemble approach for predicting summertime ground-level ozone concentration.
    Mohan S; Saranya P
    J Air Waste Manag Assoc; 2019 Feb; 69(2):220-233. PubMed ID: 30303768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel soft sensor based warning system for hazardous ground-level ozone using advanced damped least squares neural network.
    Balram D; Lian KY; Sebastian N
    Ecotoxicol Environ Saf; 2020 Dec; 205():111168. PubMed ID: 32846299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment.
    Zhan Y; Luo Y; Deng X; Grieneisen ML; Zhang M; Di B
    Environ Pollut; 2018 Feb; 233():464-473. PubMed ID: 29101889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unveiling tropospheric ozone by the traditional atmospheric model and machine learning, and their comparison:A case study in hangzhou, China.
    Feng R; Zheng HJ; Zhang AR; Huang C; Gao H; Ma YC
    Environ Pollut; 2019 Sep; 252(Pt A):366-378. PubMed ID: 31158665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of nitrogen oxides and ground-level ozone behavior in a dense air quality station network: Case study in the Lesser Antilles Arc.
    Plocoste T; Dorville JF; Monjoly S; Jacoby-Koaly S; André M
    J Air Waste Manag Assoc; 2018 Dec; 68(12):1278-1300. PubMed ID: 29708862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forecasting air quality time series using deep learning.
    Freeman BS; Taylor G; Gharabaghi B; Thé J
    J Air Waste Manag Assoc; 2018 Aug; 68(8):866-886. PubMed ID: 29652217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ground-level ozone simulation using ensemble WRF/Chem predictions over the Southeast United States.
    Wang P; Wang P; Chen K; Du J; Zhang H
    Chemosphere; 2022 Jan; 287(Pt 4):132428. PubMed ID: 34606899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of meteorological conditions and anthropogenic precursors on ground-level ozone concentrations in Chinese cities.
    Liu P; Song H; Wang T; Wang F; Li X; Miao C; Zhao H
    Environ Pollut; 2020 Jul; 262():114366. PubMed ID: 32443214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized neural network for daily-scale ozone prediction based on transfer learning.
    Ma W; Yuan Z; Lau AKH; Wang L; Liao C; Zhang Y
    Sci Total Environ; 2022 Jun; 827():154279. PubMed ID: 35248640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Application of artificial neural networks on the prediction of surface ozone concentrations].
    Shen LL; Wang YX; Duan L
    Huan Jing Ke Xue; 2011 Aug; 32(8):2231-5. PubMed ID: 22619942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal and Spatial Variation in, and Population Exposure to, Summertime Ground-Level Ozone in Beijing.
    Zhao H; Zheng Y; Li T; Wei L; Guan Q
    Int J Environ Res Public Health; 2018 Mar; 15(4):. PubMed ID: 29596366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hybrid model for spatially and temporally resolved ozone exposures in the continental United States.
    Di Q; Rowland S; Koutrakis P; Schwartz J
    J Air Waste Manag Assoc; 2017 Jan; 67(1):39-52. PubMed ID: 27332675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal trends in ground-level ozone concentrations and metrics in France over the time period 1999-2012.
    Sicard P; Serra R; Rossello P
    Environ Res; 2016 Aug; 149():122-144. PubMed ID: 27200478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using a deep convolutional neural network to predict 2017 ozone concentrations, 24 hours in advance.
    Sayeed A; Choi Y; Eslami E; Lops Y; Roy A; Jung J
    Neural Netw; 2020 Jan; 121():396-408. PubMed ID: 31604202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of maximum daily ozone level using combined neural network and statistical characteristics.
    Wang W; Lu W; Wang X; Leung AY
    Environ Int; 2003 Aug; 29(5):555-62. PubMed ID: 12742398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-objective analysis of ground-level ozone concentration control.
    Guariso G; Pirovano G; Volta M
    J Environ Manage; 2004 May; 71(1):25-33. PubMed ID: 15084357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multicity study of air pollution and mortality in Latin America (the ESCALA study).
    Romieu I; Gouveia N; Cifuentes LA; de Leon AP; Junger W; Vera J; Strappa V; Hurtado-Díaz M; Miranda-Soberanis V; Rojas-Bracho L; Carbajal-Arroyo L; Tzintzun-Cervantes G;
    Res Rep Health Eff Inst; 2012 Oct; (171):5-86. PubMed ID: 23311234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting ozone levels from climatic parameters and leaf traits of Bel-W3 tobacco variety.
    Käffer MI; Domingos M; Lieske I; Vargas VMF
    Environ Pollut; 2019 May; 248():471-477. PubMed ID: 30826610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field evaluations of newly available "interference-free" monitors for nitrogen dioxide and ozone at near-road and conventional National Ambient Air Quality Standards compliance sites.
    Leston AR; Ollison WM
    J Air Waste Manag Assoc; 2017 Nov; 67(11):1240-1248. PubMed ID: 28633004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Ensemble Learning Approach for Estimating High Spatiotemporal Resolution of Ground-Level Ozone in the Contiguous United States.
    Requia WJ; Di Q; Silvern R; Kelly JT; Koutrakis P; Mickley LJ; Sulprizio MP; Amini H; Shi L; Schwartz J
    Environ Sci Technol; 2020 Sep; 54(18):11037-11047. PubMed ID: 32808786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.