These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 30303994)
1. In vitro electrochemical assessment of electrodes for neurostimulation in roach biobots. Latif T; McKnight M; Dickey MD; Bozkurt A PLoS One; 2018; 13(10):e0203880. PubMed ID: 30303994 [TBL] [Abstract][Full Text] [Related]
2. Using liquid metal alloy (EGaIn) to electrochemically enhance SS stimulation electrodes for biobotic applications. Latif T; Fengyuan Gong ; Dickey M; Sichitiu M; Bozkurt A Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2141-2144. PubMed ID: 28268755 [TBL] [Abstract][Full Text] [Related]
3. Preliminary statistical assessment towards characterization of biobotic control. Latif T; Meng Yang ; Lobaton E; Bozkurt A Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2184-2187. PubMed ID: 28268764 [TBL] [Abstract][Full Text] [Related]
4. In-vitro evaluation of the long-term stability of PEDOT:PSS coated microelectrodes for chronic recording and electrical stimulation of neurons. Schander A; Tesmann T; Strokov S; Stemmann H; Kreiter AK; Lang W Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6174-6177. PubMed ID: 28269662 [TBL] [Abstract][Full Text] [Related]
5. The SAM, not the electrodes, dominates charge transport in metal-monolayer//Ga2O3/gallium-indium eutectic junctions. Reus WF; Thuo MM; Shapiro ND; Nijhuis CA; Whitesides GM ACS Nano; 2012 Jun; 6(6):4806-22. PubMed ID: 22548354 [TBL] [Abstract][Full Text] [Related]
6. In Vivo Electrochemical Analysis of a PEDOT/MWCNT Neural Electrode Coating. Alba NA; Du ZJ; Catt KA; Kozai TD; Cui XT Biosensors (Basel); 2015 Oct; 5(4):618-46. PubMed ID: 26473938 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical and mechanical performance of reduced graphene oxide, conductive hydrogel, and electrodeposited Pt-Ir coated electrodes: an active in vitro study. Dalrymple AN; Huynh M; Robles UA; Marroquin JB; Lee CD; Petrossians A; Whalen JJ; Li D; Parkington HC; Forsythe JS; Green RA; Poole-Warren LA; Shepherd RK; Fallon JB J Neural Eng; 2019 Dec; 17(1):016015. PubMed ID: 31652427 [TBL] [Abstract][Full Text] [Related]
9. Liquid metal polymer composite: Flexible, conductive, biocompatible, and antimicrobial scaffold. Houshyar S; Rifai A; Zizhou R; Dekiwadia C; Booth MA; John S; Fox K; Truong VK J Biomed Mater Res B Appl Biomater; 2022 May; 110(5):1131-1139. PubMed ID: 34910353 [TBL] [Abstract][Full Text] [Related]
10. In vitro and in vivo evaluation of PEDOT microelectrodes for neural stimulation and recording. Venkatraman S; Hendricks J; King ZA; Sereno AJ; Richardson-Burns S; Martin D; Carmena JM IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):307-16. PubMed ID: 21292598 [TBL] [Abstract][Full Text] [Related]
11. PEDOT-CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities. Samba R; Herrmann T; Zeck G J Neural Eng; 2015 Feb; 12(1):016014. PubMed ID: 25588201 [TBL] [Abstract][Full Text] [Related]
13. In vitro and in vivo evaluation of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate)/dopamine-coated electrodes for dopamine delivery. Sui L; Song XJ; Ren J; Cai WJ; Ju LH; Wang Y; Wang LY; Chen M J Biomed Mater Res A; 2014 Jun; 102(6):1681-96. PubMed ID: 23776160 [TBL] [Abstract][Full Text] [Related]
15. Coupling of photovoltaics with neurostimulation electrodes-optical to electrolytic transduction. Jakešová M; Kunovský O; Gablech I; Khodagholy D; Gelinas J; Głowacki ED J Neural Eng; 2024 Jul; 21(4):. PubMed ID: 38885680 [No Abstract] [Full Text] [Related]
16. Thin film platinum cuff electrodes for neurostimulation: in vitro approach of safe neurostimulation parameters. Mailley S; Hyland M; Mailley P; McLaughlin JA; McAdams ET Bioelectrochemistry; 2004 Jun; 63(1-2):359-64. PubMed ID: 15110303 [TBL] [Abstract][Full Text] [Related]
17. Locomotion control of hybrid cockroach robots. Sanchez CJ; Chiu CW; Zhou Y; González JM; Vinson SB; Liang H J R Soc Interface; 2015 Apr; 12(105):. PubMed ID: 25740855 [TBL] [Abstract][Full Text] [Related]
18. Electrical characteristics of conductive yarns and textile electrodes for medical applications. Rattfält L; Lindén M; Hult P; Berglin L; Ask P Med Biol Eng Comput; 2007 Dec; 45(12):1251-7. PubMed ID: 17929069 [TBL] [Abstract][Full Text] [Related]
19. Long-term measurement of impedance in chronically implanted depth and subdural electrodes during responsive neurostimulation in humans. Sillay KA; Rutecki P; Cicora K; Worrell G; Drazkowski J; Shih JJ; Sharan AD; Morrell MJ; Williams J; Wingeier B Brain Stimul; 2013 Sep; 6(5):718-26. PubMed ID: 23538208 [TBL] [Abstract][Full Text] [Related]
20. Hydroprinted Electronics: Ultrathin Stretchable Ag-In-Ga E-Skin for Bioelectronics and Human-Machine Interaction. Lopes PA; Paisana H; De Almeida AT; Majidi C; Tavakoli M ACS Appl Mater Interfaces; 2018 Nov; 10(45):38760-38768. PubMed ID: 30338978 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]