These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30304055)

  • 1. Multi-resolution speech analysis for automatic speech recognition using deep neural networks: Experiments on TIMIT.
    Toledano DT; Fernández-Gallego MP; Lozano-Diez A
    PLoS One; 2018; 13(10):e0205355. PubMed ID: 30304055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical modeling of speech Poincaré sections in combination of frequency analysis to improve speech recognition performance.
    Jafari A; Almasganj F; Bidhendi MN
    Chaos; 2010 Sep; 20(3):033106. PubMed ID: 20887046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning based sample extraction for automatic speech recognition using dialectal Assamese speech.
    Agarwalla S; Sarma KK
    Neural Netw; 2016 Jun; 78():97-111. PubMed ID: 26783204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting fundamental frequency from mel-frequency cepstral coefficients to enable speech reconstruction.
    Shao X; Milner B
    J Acoust Soc Am; 2005 Aug; 118(2):1134-43. PubMed ID: 16158667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phonetic variability constrained bottleneck features for joint speaker recognition and physical task stress detection.
    Zhang C; Hansen JHL
    J Acoust Soc Am; 2020 Nov; 148(5):2912. PubMed ID: 33261416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis and prediction of acoustic speech features from mel-frequency cepstral coefficients in distributed speech recognition architectures.
    Darch J; Milner B; Vaseghi S
    J Acoust Soc Am; 2008 Dec; 124(6):3989-4000. PubMed ID: 19206822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep neural architectures for dialect classification with single frequency filtering and zero-time windowing feature representations.
    Kethireddy R; Kadiri SR; Gangashetty SV
    J Acoust Soc Am; 2022 Feb; 151(2):1077. PubMed ID: 35232068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of COVID-19 Resulting Cough Using Formants and Automatic Speech Recognition System.
    Zealouk O; Satori H; Hamidi M; Laaidi N; Salek A; Satori K
    J Voice; 2023 Nov; 37(6):971.e9-971.e16. PubMed ID: 34256982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognizing Whispered Speech Produced by an Individual with Surgically Reconstructed Larynx Using Articulatory Movement Data.
    Cao B; Kim M; Mau T; Wang J
    Workshop Speech Lang Process Assist Technol; 2016 Sep; 2016():80-86. PubMed ID: 29423453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An analysis of the influence of deep neural network (DNN) topology in bottleneck feature based language recognition.
    Lozano-Diez A; Zazo R; Toledano DT; Gonzalez-Rodriguez J
    PLoS One; 2017; 12(8):e0182580. PubMed ID: 28796806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finnish parliament ASR corpus: Analysis, benchmarks and statistics.
    Virkkunen A; Rouhe A; Phan N; Kurimo M
    Lang Resour Eval; 2023 Mar; ():1-26. PubMed ID: 37360261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Hybrid HMM/DNN Embedding Extractor Models in Computational Paralinguistic Tasks.
    Vetráb M; Gosztolya G
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic Speaker Recognition System Based on Gaussian Mixture Models, Cepstral Analysis, and Genetic Selection of Distinctive Features.
    Kamiński KA; Dobrowolski AP
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Impact of Speaker Diarization on DNN-based Autism Severity Estimation.
    Eni M; Gorodetski A; Dinstein I; Zigel Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3414-3417. PubMed ID: 36086547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Domain Adaptation with Augmented Data by Deep Neural Network Based Method Using Re-Recorded Speech for Automatic Speech Recognition in Real Environment.
    Nahar R; Miwa S; Kai A
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient invariant features for sensor variability compensation in speaker recognition.
    Alimohad A; Bouridane A; Guessoum A
    Sensors (Basel); 2014 Oct; 14(10):19007-22. PubMed ID: 25313498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Comparative Study of Features for Acoustic Cough Detection Using Deep Architectures
    Miranda IDS; Diacon AH; Niesler TR
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2601-2605. PubMed ID: 31946429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Investigation on the Accuracy of Truncated DKLT Representation for Speaker Identification With Short Sequences of Speech Frames.
    Biagetti G; Crippa P; Falaschetti L; Orcioni S; Turchetti C
    IEEE Trans Cybern; 2017 Dec; 47(12):4235-4249. PubMed ID: 27662695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting independent filter bandwidth of human factor cepstral coefficients in automatic speech recognition.
    Skowronski MD; Harris JG
    J Acoust Soc Am; 2004 Sep; 116(3):1774-80. PubMed ID: 15478444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimising Speaker-Dependent Feature Extraction Parameters to Improve Automatic Speech Recognition Performance for People with Dysarthria.
    Marini M; Vanello N; Fanucci L
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.