BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30304373)

  • 1. TEPIC 2-an extended framework for transcription factor binding prediction and integrative epigenomic analysis.
    Schmidt F; Kern F; Ebert P; Baumgarten N; Schulz MH
    Bioinformatics; 2019 May; 35(9):1608-1609. PubMed ID: 30304373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NetTIME: a multitask and base-pair resolution framework for improved transcription factor binding site prediction.
    Yi R; Cho K; Bonneau R
    Bioinformatics; 2022 Oct; 38(20):4762-4770. PubMed ID: 35997560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction.
    Schmidt F; Gasparoni N; Gasparoni G; Gianmoena K; Cadenas C; Polansky JK; Ebert P; Nordström K; Barann M; Sinha A; Fröhler S; Xiong J; Dehghani Amirabad A; Behjati Ardakani F; Hutter B; Zipprich G; Felder B; Eils J; Brors B; Chen W; Hengstler JG; Hamann A; Lengauer T; Rosenstiel P; Walter J; Schulz MH
    Nucleic Acids Res; 2017 Jan; 45(1):54-66. PubMed ID: 27899623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RTFBSDB: an integrated framework for transcription factor binding site analysis.
    Wang Z; Martins AL; Danko CG
    Bioinformatics; 2016 Oct; 32(19):3024-6. PubMed ID: 27288497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting transcription factor binding using ensemble random forest models.
    Behjati Ardakani F; Schmidt F; Schulz MH
    F1000Res; 2018; 7():1603. PubMed ID: 31723409
    [No Abstract]   [Full Text] [Related]  

  • 6. On the problem of confounders in modeling gene expression.
    Schmidt F; Schulz MH
    Bioinformatics; 2019 Feb; 35(4):711-719. PubMed ID: 30084962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ProSampler: an ultrafast and accurate motif finder in large ChIP-seq datasets for combinatory motif discovery.
    Li Y; Ni P; Zhang S; Li G; Su Z
    Bioinformatics; 2019 Nov; 35(22):4632-4639. PubMed ID: 31070745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BART: a transcription factor prediction tool with query gene sets or epigenomic profiles.
    Wang Z; Civelek M; Miller CL; Sheffield NC; Guertin MJ; Zang C
    Bioinformatics; 2018 Aug; 34(16):2867-2869. PubMed ID: 29608647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Romulus: robust multi-state identification of transcription factor binding sites from DNase-seq data.
    Jankowski A; Tiuryn J; Prabhakar S
    Bioinformatics; 2016 Aug; 32(16):2419-26. PubMed ID: 27153645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MAGGIE: leveraging genetic variation to identify DNA sequence motifs mediating transcription factor binding and function.
    Shen Z; Hoeksema MA; Ouyang Z; Benner C; Glass CK
    Bioinformatics; 2020 Jul; 36(Suppl_1):i84-i92. PubMed ID: 32657363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TSPTFBS: a Docker image for trans-species prediction of transcription factor binding sites in plants.
    Liu L; Zhang G; He S; Hu X
    Bioinformatics; 2021 Apr; 37(2):260-262. PubMed ID: 33416862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of single-cell gene expression for transcription factor analysis.
    Behjati Ardakani F; Kattler K; Heinen T; Schmidt F; Feuerborn D; Gasparoni G; Lepikhov K; Nell P; Hengstler J; Walter J; Schulz MH
    Gigascience; 2020 Oct; 9(11):. PubMed ID: 33124660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence2Vec: a novel embedding approach for modeling transcription factor binding affinity landscape.
    Dai H; Umarov R; Kuwahara H; Li Y; Song L; Gao X
    Bioinformatics; 2017 Nov; 33(22):3575-3583. PubMed ID: 28961686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A DNA shape-based regulatory score improves position-weight matrix-based recognition of transcription factor binding sites.
    Yang J; Ramsey SA
    Bioinformatics; 2015 Nov; 31(21):3445-50. PubMed ID: 26130577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-based prediction of transcription factor binding specificity using an integrative energy function.
    Farrel A; Murphy J; Guo JT
    Bioinformatics; 2016 Jun; 32(12):i306-i313. PubMed ID: 27307632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MTTFsite: cross-cell type TF binding site prediction by using multi-task learning.
    Zhou J; Lu Q; Gui L; Xu R; Long Y; Wang H
    Bioinformatics; 2019 Dec; 35(24):5067-5077. PubMed ID: 31161194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility.
    Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J
    BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pycallingcards: an integrated environment for visualizing, analyzing, and interpreting Calling Cards data.
    Guo J; Zhang W; Chen X; Yen A; Chen L; Shively CA; Li D; Wang T; Dougherty JD; Mitra RD
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38323623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The adapted Activity-By-Contact model for enhancer-gene assignment and its application to single-cell data.
    Hecker D; Behjati Ardakani F; Karollus A; Gagneur J; Schulz MH
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36708003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.