These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 30304378)
1. A novel approach for drug response prediction in cancer cell lines via network representation learning. Yang J; Li A; Li Y; Guo X; Wang M Bioinformatics; 2019 May; 35(9):1527-1535. PubMed ID: 30304378 [TBL] [Abstract][Full Text] [Related]
2. A novel heterogeneous network-based method for drug response prediction in cancer cell lines. Zhang F; Wang M; Xi J; Yang J; Li A Sci Rep; 2018 Feb; 8(1):3355. PubMed ID: 29463808 [TBL] [Abstract][Full Text] [Related]
3. Predicting cancer drug response using parallel heterogeneous graph convolutional networks with neighborhood interactions. Peng W; Liu H; Dai W; Yu N; Wang J Bioinformatics; 2022 Sep; 38(19):4546-4553. PubMed ID: 35997568 [TBL] [Abstract][Full Text] [Related]
4. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization. Wang L; Li X; Zhang L; Gao Q BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489 [TBL] [Abstract][Full Text] [Related]
5. MMCL-CDR: enhancing cancer drug response prediction with multi-omics and morphology images contrastive representation learning. Li Y; Guo Z; Gao X; Wang G Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38070154 [TBL] [Abstract][Full Text] [Related]
6. Multi-way relation-enhanced hypergraph representation learning for anti-cancer drug synergy prediction. Liu X; Song C; Liu S; Li M; Zhou X; Zhang W Bioinformatics; 2022 Oct; 38(20):4782-4789. PubMed ID: 36000898 [TBL] [Abstract][Full Text] [Related]
7. Clinical drug response prediction from preclinical cancer cell lines by logistic matrix factorization approach. Emdadi A; Eslahchi C J Bioinform Comput Biol; 2022 Apr; 20(2):2150035. PubMed ID: 34923927 [TBL] [Abstract][Full Text] [Related]
8. Predicting Cancer Drug Response using a Recommender System. Suphavilai C; Bertrand D; Nagarajan N Bioinformatics; 2018 Nov; 34(22):3907-3914. PubMed ID: 29868820 [TBL] [Abstract][Full Text] [Related]
9. Deep mining heterogeneous networks of biomedical linked data to predict novel drug-target associations. Zong N; Kim H; Ngo V; Harismendy O Bioinformatics; 2017 Aug; 33(15):2337-2344. PubMed ID: 28430977 [TBL] [Abstract][Full Text] [Related]
10. MSDRP: a deep learning model based on multisource data for predicting drug response. Zhao H; Zhang X; Zhao Q; Li Y; Wang J Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37606993 [TBL] [Abstract][Full Text] [Related]
11. Computational probing protein-protein interactions targeting small molecules. Wang YC; Chen SL; Deng NY; Wang Y Bioinformatics; 2016 Jan; 32(2):226-34. PubMed ID: 26415726 [TBL] [Abstract][Full Text] [Related]
12. Drug Response Prediction by Globally Capturing Drug and Cell Line Information in a Heterogeneous Network. Le DH; Pham VH J Mol Biol; 2018 Sep; 430(18 Pt A):2993-3004. PubMed ID: 29966608 [TBL] [Abstract][Full Text] [Related]
13. Kernelized rank learning for personalized drug recommendation. He X; Folkman L; Borgwardt K Bioinformatics; 2018 Aug; 34(16):2808-2816. PubMed ID: 29528376 [TBL] [Abstract][Full Text] [Related]
14. TGSA: protein-protein association-based twin graph neural networks for drug response prediction with similarity augmentation. Zhu Y; Ouyang Z; Chen W; Feng R; Chen DZ; Cao J; Wu J Bioinformatics; 2022 Jan; 38(2):461-468. PubMed ID: 34559177 [TBL] [Abstract][Full Text] [Related]
15. Auto-HMM-LMF: feature selection based method for prediction of drug response via autoencoder and hidden Markov model. Emdadi A; Eslahchi C BMC Bioinformatics; 2021 Jan; 22(1):33. PubMed ID: 33509079 [TBL] [Abstract][Full Text] [Related]
16. Network Propagation Predicts Drug Synergy in Cancers. Li H; Li T; Quang D; Guan Y Cancer Res; 2018 Sep; 78(18):5446-5457. PubMed ID: 30054332 [TBL] [Abstract][Full Text] [Related]
17. Drug response prediction using graph representation learning and Laplacian feature selection. Xie M; Lei X; Zhong J; Ouyang J; Li G BMC Bioinformatics; 2022 Dec; 23(Suppl 8):532. PubMed ID: 36494630 [TBL] [Abstract][Full Text] [Related]
18. Deep learning and multi-omics approach to predict drug responses in cancer. Wang C; Lye X; Kaalia R; Kumar P; Rajapakse JC BMC Bioinformatics; 2022 Nov; 22(Suppl 10):632. PubMed ID: 36443676 [TBL] [Abstract][Full Text] [Related]
19. DSPLMF: A Method for Cancer Drug Sensitivity Prediction Using a Novel Regularization Approach in Logistic Matrix Factorization. Emdadi A; Eslahchi C Front Genet; 2020; 11():75. PubMed ID: 32174963 [TBL] [Abstract][Full Text] [Related]