These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 30304488)
1. Estimating conductive sapwood area in diffuse and ring porous trees with electronic resistance tomography. Benson AR; Koeser AK; Morgenroth J Tree Physiol; 2019 Mar; 39(3):484-494. PubMed ID: 30304488 [TBL] [Abstract][Full Text] [Related]
2. Using electrical resistivity tomography to differentiate sapwood from heartwood: application to conifers. Guyot A; Ostergaard KT; Lenkopane M; Fan J; Lockington DA Tree Physiol; 2013 Feb; 33(2):187-94. PubMed ID: 23329335 [TBL] [Abstract][Full Text] [Related]
3. Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits. Köcher P; Horna V; Leuschner C Tree Physiol; 2013 Aug; 33(8):817-32. PubMed ID: 23999137 [TBL] [Abstract][Full Text] [Related]
4. Variation in the radial patterns of sap flux density in pubescent oak (Quercus pubescens) and its implications for tree and stand transpiration measurements. Poyatos R; Cermák J; Llorens P Tree Physiol; 2007 Apr; 27(4):537-48. PubMed ID: 17241996 [TBL] [Abstract][Full Text] [Related]
5. Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species. Gebauer T; Horna V; Leuschner C Tree Physiol; 2008 Dec; 28(12):1821-30. PubMed ID: 19193565 [TBL] [Abstract][Full Text] [Related]
6. Calibration of thermal dissipation sap flow probes for ring- and diffuse-porous trees. Bush SE; Hultine KR; Sperry JS; Ehleringer JR Tree Physiol; 2010 Dec; 30(12):1545-54. PubMed ID: 21112973 [TBL] [Abstract][Full Text] [Related]
7. Structural and compositional controls on transpiration in 40- and 450-year-old riparian forests in western Oregon, USA. Moore GW; Bond BJ; Jones JA; Phillips N; Meinzer FC Tree Physiol; 2004 May; 24(5):481-91. PubMed ID: 14996653 [TBL] [Abstract][Full Text] [Related]
8. Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Barbaroux C; Bréda N Tree Physiol; 2002 Dec; 22(17):1201-10. PubMed ID: 12464573 [TBL] [Abstract][Full Text] [Related]
9. A model of heat transfer in sapwood and implications for sap flux density measurements using thermal dissipation probes. Wullschleger SD; Childs KW; King AW; Hanson PJ Tree Physiol; 2011 Jun; 31(6):669-79. PubMed ID: 21743059 [TBL] [Abstract][Full Text] [Related]
10. Predictive models for radial sap flux variation in coniferous, diffuse-porous and ring-porous temperate trees. Berdanier AB; Miniat CF; Clark JS Tree Physiol; 2016 Aug; 36(8):932-41. PubMed ID: 27126230 [TBL] [Abstract][Full Text] [Related]
11. Linking fine root morphology, hydraulic functioning and shade tolerance of trees. Zadworny M; Comas LH; Eissenstat DM Ann Bot; 2018 Aug; 122(2):239-250. PubMed ID: 29897405 [TBL] [Abstract][Full Text] [Related]
12. [Sap flow characteristics of Quercus liaotungensis in response to sapwood area and soil moisture in the loess hilly region, China]. Lyu JL; He QY; Yan MJ; Li GQ; Du S Ying Yong Sheng Tai Xue Bao; 2018 Mar; 29(3):725-731. PubMed ID: 29722212 [TBL] [Abstract][Full Text] [Related]
13. Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest. Daley MJ; Phillips NG Tree Physiol; 2006 Apr; 26(4):411-9. PubMed ID: 16414920 [TBL] [Abstract][Full Text] [Related]
14. Estimating water use by sugar maple trees: considerations when using heat-pulse methods in trees with deep functional sapwood. Pausch RC; Grote EE; Dawson TE Tree Physiol; 2000 Mar; 20(4):217-227. PubMed ID: 12651458 [TBL] [Abstract][Full Text] [Related]
15. Differential anatomical responses to elevated CO2 in saplings of four hardwood species. Watanabe Y; Satomura T; Sasa K; Funada R; Koike T Plant Cell Environ; 2010 Jul; 33(7):1101-11. PubMed ID: 20199624 [TBL] [Abstract][Full Text] [Related]
16. Anatomical explanations for acute depressions in radial pattern of axial sap flow in two diffuse-porous mangrove species: implications for water use. Zhao H; Yang S; Guo X; Peng C; Gu X; Deng C; Chen L Tree Physiol; 2018 Feb; 38(2):276-286. PubMed ID: 29346677 [TBL] [Abstract][Full Text] [Related]
17. Changes in wood density, wood anatomy and hydraulic properties of the xylem along the root-to-shoot flow path in tropical rainforest trees. Schuldt B; Leuschner C; Brock N; Horna V Tree Physiol; 2013 Feb; 33(2):161-74. PubMed ID: 23292668 [TBL] [Abstract][Full Text] [Related]
18. Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees. Wullschleger SD; King AW Tree Physiol; 2000 Apr; 20(8):511-518. PubMed ID: 12651431 [TBL] [Abstract][Full Text] [Related]
19. Above- and belowground controls on water use by trees of different wood types in an eastern US deciduous forest. Meinzer FC; Woodruff DR; Eissenstat DM; Lin HS; Adams TS; McCulloh KA Tree Physiol; 2013 Apr; 33(4):345-56. PubMed ID: 23513033 [TBL] [Abstract][Full Text] [Related]
20. Flash-flood impacts cause changes in wood anatomy of Alnus glutinosa, Fraxinus angustifolia and Quercus pyrenaica. Ballesteros JA; Stoffel M; Bollschweiler M; Bodoque JM; Díez-Herrero A Tree Physiol; 2010 Jun; 30(6):773-81. PubMed ID: 20462937 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]