These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 30304563)
1. Exploring the effect of N308D mutation on protein tyrosine phosphatase-2 cause gain-of-function activity by a molecular dynamics study. Sun YZ; Chen XB; Wang RR; Li WY; Ma Y J Cell Biochem; 2019 Apr; 120(4):5949-5961. PubMed ID: 30304563 [TBL] [Abstract][Full Text] [Related]
2. Exploring the effect of D61G mutation on SHP2 cause gain of function activity by a molecular dynamics study. Li HL; Ma Y; Zheng CJ; Jin WY; Liu WS; Wang RL J Biomol Struct Dyn; 2018 Nov; 36(14):3856-3868. PubMed ID: 29125030 [TBL] [Abstract][Full Text] [Related]
3. Structural mechanism associated with domain opening in gain-of-function mutations in SHP2 phosphatase. Darian E; Guvench O; Yu B; Qu CK; MacKerell AD Proteins; 2011 May; 79(5):1573-88. PubMed ID: 21365683 [TBL] [Abstract][Full Text] [Related]
4. Exploring the effect of E76K mutation on SHP2 cause gain-of-function activity by a molecular dynamics study. Li WY; Wei HY; Sun YZ; Zhou H; Ma Y; Wang RL J Cell Biochem; 2018 Dec; 119(12):9941-9956. PubMed ID: 30129165 [TBL] [Abstract][Full Text] [Related]
5. Exploring the reason for increased activity of SHP2 caused by D61Y mutation through molecular dynamics. Wang RR; Ma Y; Du S; Li WY; Sun YZ; Zhou H; Wang RL Comput Biol Chem; 2019 Feb; 78():133-143. PubMed ID: 30508783 [TBL] [Abstract][Full Text] [Related]
6. Redox Regulation of a Gain-of-Function Mutation (N308D) in SHP2 Noonan Syndrome. Machado LESF; Critton DA; Page R; Peti W ACS Omega; 2017 Nov; 2(11):8313-8318. PubMed ID: 29214238 [TBL] [Abstract][Full Text] [Related]
7. Investigating the reason for loss-of-function of Src homology 2 domain-containing protein tyrosine phosphatase 2 (SHP2) caused by Y279C mutation through molecular dynamics simulation. Liu WS; Wang RR; Li WY; Rong M; Liu CL; Ma Y; Wang RL J Biomol Struct Dyn; 2020 Jun; 38(9):2509-2520. PubMed ID: 31258001 [TBL] [Abstract][Full Text] [Related]
8. An allosteric interaction controls the activation mechanism of SHP2 tyrosine phosphatase. Anselmi M; Hub JS Sci Rep; 2020 Oct; 10(1):18530. PubMed ID: 33116231 [TBL] [Abstract][Full Text] [Related]
10. Exploring the dynamic mechanism of allosteric drug SHP099 inhibiting SHP2 Du S; Lu XH; Li WY; Li LP; Ma YC; Zhou L; Wu JW; Ma Y; Wang RL Mol Divers; 2021 Aug; 25(3):1873-1887. PubMed ID: 33392964 [TBL] [Abstract][Full Text] [Related]
12. Discriminating between competing models for the allosteric regulation of oncogenic phosphatase SHP2 by characterizing its active state. Calligari P; Santucci V; Stella L; Bocchinfuso G Comput Struct Biotechnol J; 2021; 19():6125-6139. PubMed ID: 34900129 [TBL] [Abstract][Full Text] [Related]
13. Exploring the cause of the dual allosteric targeted inhibition attaching to allosteric sites enhancing SHP2 inhibition. Yangchun M; WenYu Y; Liang Z; LiPeng L; JingWei W; WeiYa L; Shan D; Ying M; RunLing W Mol Divers; 2022 Jun; 26(3):1567-1580. PubMed ID: 34338914 [TBL] [Abstract][Full Text] [Related]
14. Exploring the mechanism of the potent allosteric inhibitor compound2 on SHP2 Zhou L; Feng Y; Ma YC; Zhang Z; Wu JW; Du S; Li WY; Lu XH; Ma Y; Wang RL J Mol Graph Model; 2021 Mar; 103():107807. PubMed ID: 33338846 [TBL] [Abstract][Full Text] [Related]
15. The pathogenic T42A mutation in SHP2 rewires the interaction specificity of its N-terminal regulatory domain. van Vlimmeren AE; Voleti R; Chartier CA; Jiang Z; Karandur D; Humphries PA; Lo WL; Shah NH bioRxiv; 2024 Apr; ():. PubMed ID: 37502916 [TBL] [Abstract][Full Text] [Related]
16. Gain-of-function mutations in the gene encoding the tyrosine phosphatase SHP2 induce hydrocephalus in a catalytically dependent manner. Zheng H; Yu WM; Waclaw RR; Kontaridis MI; Neel BG; Qu CK Sci Signal; 2018 Mar; 11(522):. PubMed ID: 29559584 [TBL] [Abstract][Full Text] [Related]
17. The loops of the N-SH2 binding cleft do not serve as allosteric switch in SHP2 activation. Anselmi M; Hub JS Proc Natl Acad Sci U S A; 2021 Apr; 118(17):. PubMed ID: 33888588 [TBL] [Abstract][Full Text] [Related]
18. Exploring the Allosteric Mechanism of Src Homology-2 Domain-Containing Protein Tyrosine Phosphatase 2 (SHP2) by Molecular Dynamics Simulations. Wang Q; Zhao WC; Fu XQ; Zheng QC Front Chem; 2020; 8():597495. PubMed ID: 33330386 [TBL] [Abstract][Full Text] [Related]
19. PTPN11 mutations in Noonan syndrome type I: detection of recurrent mutations in exons 3 and 13. Maheshwari M; Belmont J; Fernbach S; Ho T; Molinari L; Yakub I; Yu F; Combes A; Towbin J; Craigen WJ; Gibbs R Hum Mutat; 2002 Oct; 20(4):298-304. PubMed ID: 12325025 [TBL] [Abstract][Full Text] [Related]
20. The effect of deleting residue C269 in the β12-β13 loop of protein phosphatase 2A (PP2A)catalytic subunit on the interaction between PP2A and metal ions, especially Mn(2+). Li H; Liu C; Zhang H; Wei Q Biochim Biophys Acta; 2011 Dec; 1814(12):1769-74. PubMed ID: 21996587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]