These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 30304690)
1. Accurate Drug Repositioning through Non-tissue-Specific Core Signatures from Cancer Transcriptomes. Xu C; Ai D; Shi D; Suo S; Chen X; Yan Y; Cao Y; Zhang R; Sun N; Chen W; McDermott J; Zhang S; Zeng Y; Han JJ Cell Rep; 2018 Oct; 25(2):523-535.e5. PubMed ID: 30304690 [TBL] [Abstract][Full Text] [Related]
2. Drug Repositioning for Cancer Therapy Based on Large-Scale Drug-Induced Transcriptional Signatures. Lee H; Kang S; Kim W PLoS One; 2016; 11(3):e0150460. PubMed ID: 26954019 [TBL] [Abstract][Full Text] [Related]
3. Integrating LINCS Data to Evaluate Cancer Transcriptome Modifying Potential of Small-molecule Compounds for Drug Repositioning. Zhao Y; Liu Y; Bai H Comb Chem High Throughput Screen; 2021; 24(9):1340-1350. PubMed ID: 33109034 [TBL] [Abstract][Full Text] [Related]
4. Computational Drug Repositioning for Gastric Cancer using Reversal Gene Expression Profiles. Kim IW; Jang H; Kim JH; Kim MG; Kim S; Oh JM Sci Rep; 2019 Feb; 9(1):2660. PubMed ID: 30804389 [TBL] [Abstract][Full Text] [Related]
5. A Review of Drug Repositioning Based Chemical-induced Cell Line Expression Data. Wang F; Lei X; Wu FX Curr Med Chem; 2020; 27(32):5340-5350. PubMed ID: 30381060 [TBL] [Abstract][Full Text] [Related]
6. Influence of batch effect correction methods on drug induced differential gene expression profiles. Zhou W; Koudijs KKM; Böhringer S BMC Bioinformatics; 2019 Aug; 20(1):437. PubMed ID: 31438848 [TBL] [Abstract][Full Text] [Related]
7. Prioritizing therapeutics for lung cancer: an integrative meta-analysis of cancer gene signatures and chemogenomic data. Fortney K; Griesman J; Kotlyar M; Pastrello C; Angeli M; Sound-Tsao M; Jurisica I PLoS Comput Biol; 2015 Mar; 11(3):e1004068. PubMed ID: 25786242 [TBL] [Abstract][Full Text] [Related]
8. Identifying Gene Signatures for Cancer Drug Repositioning Based on Sample Clustering. Wang F; Ding Y; Lei X; Liao B; Wu FX IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):953-965. PubMed ID: 32845842 [TBL] [Abstract][Full Text] [Related]
9. Cancer Drug Repositioning by Comparison of Gene Expression in Humans and Axolotl ( Öktem EK; Yazar M; Gulfidan G; Arga KY OMICS; 2019 Aug; 23(8):389-405. PubMed ID: 31305215 [TBL] [Abstract][Full Text] [Related]
10. Computational drugs repositioning identifies inhibitors of oncogenic PI3K/AKT/P70S6K-dependent pathways among FDA-approved compounds. Carrella D; Manni I; Tumaini B; Dattilo R; Papaccio F; Mutarelli M; Sirci F; Amoreo CA; Mottolese M; Iezzi M; Ciolli L; Aria V; Bosotti R; Isacchi A; Loreni F; Bardelli A; Avvedimento VE; di Bernardo D; Cardone L Oncotarget; 2016 Sep; 7(37):58743-58758. PubMed ID: 27542212 [TBL] [Abstract][Full Text] [Related]
11. DeSigN: connecting gene expression with therapeutics for drug repurposing and development. Lee BK; Tiong KH; Chang JK; Liew CS; Abdul Rahman ZA; Tan AC; Khang TF; Cheong SC BMC Genomics; 2017 Jan; 18(Suppl 1):934. PubMed ID: 28198666 [TBL] [Abstract][Full Text] [Related]
12. In silico drug repositioning: from large-scale transcriptome data to therapeutics. Kwon OS; Kim W; Cha HJ; Lee H Arch Pharm Res; 2019 Oct; 42(10):879-889. PubMed ID: 31482491 [TBL] [Abstract][Full Text] [Related]
13. Personalised drug repositioning for Clear Cell Renal Cell Carcinoma using gene expression. Koudijs KKM; Terwisscha van Scheltinga AGT; Böhringer S; Schimmel KJM; Guchelaar HJ Sci Rep; 2018 Mar; 8(1):5250. PubMed ID: 29588458 [TBL] [Abstract][Full Text] [Related]
14. Transcriptomic Data Mining and Repurposing for Computational Drug Discovery. Wang Y; Yella J; Jegga AG Methods Mol Biol; 2019; 1903():73-95. PubMed ID: 30547437 [TBL] [Abstract][Full Text] [Related]
15. Signature reversion of three disease-associated gene signatures prioritizes cancer drug repurposing candidates. Fisher JL; Wilk EJ; Oza VH; Gary SE; Howton TC; Flanary VL; Clark AD; Hjelmeland AB; Lasseigne BN FEBS Open Bio; 2024 May; 14(5):803-830. PubMed ID: 38531616 [TBL] [Abstract][Full Text] [Related]
16. Drug Selection in the Genomic Age: Application of the Coexpression Extrapolation Principle for Drug Repositioning in Cancer Therapy. Gustafson DL; Fowles JS; Brown KC; Theodorescu D Assay Drug Dev Technol; 2015 Dec; 13(10):623-7. PubMed ID: 26690765 [TBL] [Abstract][Full Text] [Related]
17. A review of validation strategies for computational drug repositioning. Brown AS; Patel CJ Brief Bioinform; 2018 Jan; 19(1):174-177. PubMed ID: 27881429 [TBL] [Abstract][Full Text] [Related]
18. Pathway-Based Drug Repositioning for Cancers: Computational Prediction and Experimental Validation. Iwata M; Hirose L; Kohara H; Liao J; Sawada R; Akiyoshi S; Tani K; Yamanishi Y J Med Chem; 2018 Nov; 61(21):9583-9595. PubMed ID: 30371064 [TBL] [Abstract][Full Text] [Related]
19. Novel drug candidate for the treatment of several soft‑tissue sarcoma histologic subtypes: A computational method using survival‑associated gene signatures for drug repurposing. Yang X; Huang WT; Wu HY; He RQ; Ma J; Liu AG; Chen G Oncol Rep; 2019 Apr; 41(4):2241-2253. PubMed ID: 30816547 [TBL] [Abstract][Full Text] [Related]
20. Statistically controlled identification of differentially expressed genes in one-to-one cell line comparisons of the CMAP database for drug repositioning. He J; Yan H; Cai H; Li X; Guan Q; Zheng W; Chen R; Liu H; Song K; Guo Z; Wang X J Transl Med; 2017 Sep; 15(1):198. PubMed ID: 28962576 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]