BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 30305592)

  • 1. Ultrasensitive Biosensor for Detection of Mercury(II) Ions Based on DNA-Cu Nanoclusters and Exonuclease III-assisted Signal Amplification.
    Zhang H; Guan Y; Li X; Lian L; Wang X; Gao W; Zhu B; Liu X; Lou D
    Anal Sci; 2018; 34(10):1155-1161. PubMed ID: 30305592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free hairpin DNA-scaffolded silver nanoclusters for fluorescent detection of Hg²⁺ using exonuclease III-assisted target recycling amplification.
    Xu M; Gao Z; Wei Q; Chen G; Tang D
    Biosens Bioelectron; 2016 May; 79():411-5. PubMed ID: 26741529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Label-free and Highly Sensitive Fluorescence Strategy for Mercury Ion Detection Based on Exonuclease III-aided Recycling Amplification.
    Ding B; Liu C; Wu Q; Wang Y; Li L; Yang H
    Anal Sci; 2018; 34(3):259-261. PubMed ID: 29526891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free rapid and simple detection of exonuclease III Activity with DNA Templated Copper Nanoclusters.
    Lee C; Gang J
    J Microbiol Biotechnol; 2018 Sep; 28(9):1467-1472. PubMed ID: 30369112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-free detection of exonuclease III by using dsDNA-templated copper nanoparticles as fluorescent probe.
    Zhang H; Lin Z; Su X
    Talanta; 2015 Jan; 131():59-63. PubMed ID: 25281073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorometric determination of mercury(II) using positively charged gold nanoparticles, DNA-templated silver nanoclusters, T-Hg(II)-T interaction and exonuclease assisted signal amplification.
    Ma H; Xue N; Wu S; Li Z; Miao X
    Mikrochim Acta; 2019 May; 186(5):317. PubMed ID: 31049707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colorimetric and visual mercury(II) assay based on target-induced cyclic enzymatic amplification, thymine-Hg(II)-thymine interaction, and aggregation of gold nanoparticles.
    Song X; Wang Y; Liu S; Zhang X; Wang H; Wang J; Huang J
    Mikrochim Acta; 2019 Jan; 186(2):105. PubMed ID: 30637516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical DNA sensor for specific detection of picomolar Hg(II) based on exonuclease III-assisted recycling signal amplification.
    Gan X; Zhao H; Chen S; Quan X
    Analyst; 2015 Mar; 140(6):2029-36. PubMed ID: 25676090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autocatalytic DNA circuit for Hg
    Zhou D; Zeng L; Pan J; Li Q; Chen J
    Talanta; 2020 Jan; 207():120258. PubMed ID: 31594619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasensitive Label-Free Resonance Rayleigh Scattering Aptasensor for Hg(2+) Using Hg(2+)-Triggered Exonuclease III-Assisted Target Recycling and Growth of G-Wires for Signal Amplification.
    Ren W; Zhang Y; Chen HG; Gao ZF; Li NB; Luo HQ
    Anal Chem; 2016 Jan; 88(2):1385-90. PubMed ID: 26704253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ultrasensitive electrochemiluminescence biosensor for detection of MicroRNA by in-situ electrochemically generated copper nanoclusters as luminophore and TiO
    Liao H; Zhou Y; Chai Y; Yuan R
    Biosens Bioelectron; 2018 Aug; 114():10-14. PubMed ID: 29775853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasensitive colorimetric aptasensor for Hg
    Memon AG; Xing Y; Zhou X; Wang R; Liu L; Zeng S; He M; Ma M
    J Hazard Mater; 2020 Feb; 384():120948. PubMed ID: 31610345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An electrochemical aptasensor for thrombin detection based on the recycling of exonuclease III and double-stranded DNA-templated copper nanoparticles assisted signal amplification.
    Zhao J; Xin M; Cao Y; Yin Y; Shu Y; Ma W
    Anal Chim Acta; 2015 Feb; 860():23-8. PubMed ID: 25682243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorometric determination of mercury(II) via a graphene oxide-based assay using exonuclease III-assisted signal amplification and thymidine-Hg(II)-thymidine interaction.
    Ning Y; Hu J; Wei K; He G; Wu T; Lu F
    Mikrochim Acta; 2019 Mar; 186(4):216. PubMed ID: 30838468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile and sensitive detection of mercury ions based on fluorescent structure-switching aptamer probe and exonuclease Ⅲ-assisted signal amplification.
    Wang B; Liu Z; Li Z; Xu N; Zhang X; Su R; Wang J; Jin R; Sun C
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123223. PubMed ID: 37562208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A label-free and enzyme-free ultra-sensitive transcription factors biosensor using DNA-templated copper nanoparticles as fluorescent indicator and hairpin DNA cascade reaction as signal amplifier.
    Sha L; Zhang X; Wang G
    Biosens Bioelectron; 2016 Aug; 82():85-92. PubMed ID: 27045526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent detection of Cu (II) ions based on DNAzymatic cascaded cyclic amplification.
    Tian J; Du Z; Zhu L; Shao X; Li X; Xu W
    Mikrochim Acta; 2020 Jul; 187(8):443. PubMed ID: 32661732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive label-free oligonucleotide-based microfluidic detection of mercury (II) ion by using exonuclease I.
    Yuan M; Zhu Y; Lou X; Chen C; Wei G; Lan M; Zhao J
    Biosens Bioelectron; 2012 Jan; 31(1):330-6. PubMed ID: 22172497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polydopamine nanotube mediated fluorescent biosensor for Hg(ii) determination through exonuclease III-assisted signal amplification.
    A R; P P
    Analyst; 2018 May; 143(11):2623-2631. PubMed ID: 29748683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Encapsulation and Release of Recognition Probes Based on a Rigid Three-Dimensional DNA "Nanosafe-box" for Construction of a Electrochemical Biosensor.
    Qing M; Chen S; Xie S; Tang Y; Zhang J; Yuan R
    Anal Chem; 2020 Jan; 92(2):1811-1817. PubMed ID: 31804064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.