These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30305598)

  • 21. Utility of retention prediction model for investigation of peptide separation selectivity in reversed-phase liquid chromatography: impact of concentration of trifluoroacetic acid, column temperature, gradient slope and type of stationary phase.
    Gilar M; Xie H; Jaworski A
    Anal Chem; 2010 Jan; 82(1):265-75. PubMed ID: 19957962
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reversed-phase high-performance liquid chromatography of amphoteric beta-lactam antibiotics: effects of columns, ion-pairing reagents and mobile phase pH on their retention times.
    Huang HS; Wu JR; Chen ML
    J Chromatogr; 1991 Mar; 564(1):195-203. PubMed ID: 1860913
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of mobile phase additives on solute retention at low aqueous pH in hydrophilic interaction liquid chromatography.
    McCalley DV
    J Chromatogr A; 2017 Feb; 1483():71-79. PubMed ID: 28069167
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Separation of amino acid and peptide stereoisomers by nonionic micelle-mediated capillary electrophoresis after chiral derivatization.
    Liu YM; Schneider M; Sticha CM; Toyooka T; Sweedler JV
    J Chromatogr A; 1998 Mar; 800(2):345-54. PubMed ID: 9561768
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantification of glutathione in plasma samples by HPLC using 4-fluoro-7-nitrobenzofurazan as a fluorescent labeling reagent.
    Wang X; Chi D; Song D; Su G; Li L; Shao L
    J Chromatogr Sci; 2012 Feb; 50(2):119-22. PubMed ID: 22298761
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization and multi-mode liquid chromatographic application of 4-propylaminomethyl benzoic acid bonded silica--a zwitterionic stationary phase.
    Wijekoon A; Gangoda ME; Gregory RB
    J Chromatogr A; 2012 Dec; 1270():212-8. PubMed ID: 23200307
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comprehensive analysis of branched aliphatic D-amino acids in mammals using an integrated multi-loop two-dimensional column-switching high-performance liquid chromatographic system combining reversed-phase and enantioselective columns.
    Hamase K; Morikawa A; Ohgusu T; Lindner W; Zaitsu K
    J Chromatogr A; 2007 Mar; 1143(1-2):105-11. PubMed ID: 17223114
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amino acids analysis using a monolithic silica column after derivatization with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F).
    Song Y; Funatsu T; Tsunoda M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Feb; 879(5-6):335-40. PubMed ID: 21242111
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous determination of hydrophilic amino acid enantiomers in mammalian tissues and physiological fluids applying a fully automated micro-two-dimensional high-performance liquid chromatographic concept.
    Hamase K; Miyoshi Y; Ueno K; Han H; Hirano J; Morikawa A; Mita M; Kaneko T; Lindner W; Zaitsu K
    J Chromatogr A; 2010 Feb; 1217(7):1056-62. PubMed ID: 19767006
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-Dimensional High-Performance Liquid Chromatographic Determination of Asn, Ser, Ala, and Pro Enantiomers in the Plasma of Patients with Chronic Kidney Disease.
    Furusho A; Koga R; Akita T; Mita M; Kimura T; Hamase K
    Anal Chem; 2019 Sep; 91(18):11569-11575. PubMed ID: 31436409
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Retention modeling under organic modifier gradient conditions in ion-pair reversed-phase chromatography. Application to the separation of a set of underivatized amino acids.
    Pappa-Louisi A; Agrafiotou P; Papachristos K
    Anal Bioanal Chem; 2010 Jul; 397(6):2151-9. PubMed ID: 20101505
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of cyanuric chloride-based six new chiral derivatizing reagents having amino acids and amino acid amides as chiral auxiliaries for enantioresolution of proteinogenic amino acids by reversed-phase high-performance liquid chromatography.
    Bhushan R; Dixit S
    Amino Acids; 2012 Apr; 42(4):1371-8. PubMed ID: 21246226
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amino acid analysis by high-performance liquid chromatography after derivatization with 9-fluorenylmethyloxycarbonyl chloride Literature overview and further study.
    Jámbor A; Molnár-Perl I
    J Chromatogr A; 2009 Apr; 1216(15):3064-77. PubMed ID: 19215925
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis, characterization, and application of a novel multifunctional stationary phase for hydrophilic interaction/reversed phase mixed-mode chromatography.
    Aral H; Çelik KS; Altındağ R; Aral T
    Talanta; 2017 Nov; 174():703-714. PubMed ID: 28738646
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reversed-phase high-performance liquid chromatographic separation of diastereomers of (R,S)-mexiletine prepared by microwave irradiation with four new chiral derivatizing reagents based on trichloro-s-triazine having amino acids as chiral auxiliaries and 10 others having amino acid amides.
    Bhushan R; Dixit S
    J Chromatogr A; 2010 Dec; 1217(49):7669-76. PubMed ID: 21035811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mobile phase effects on the retention on polar columns with special attention to the dual hydrophilic interaction-reversed-phase liquid chromatography mechanism, a review.
    Jandera P; Hájek T
    J Sep Sci; 2018 Jan; 41(1):145-162. PubMed ID: 29072360
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Destructive stationary phase gradients for reversed-phase/hydrophilic interaction liquid chromatography.
    Cain CN; Forzano AV; Rutan SC; Collinson MM
    J Chromatogr A; 2018 Oct; 1570():82-90. PubMed ID: 30104058
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-dimensional high-performance liquid chromatographic analysis of chiral amino acids in carbonaceous chondrites.
    Furusho A; Akita T; Mita M; Naraoka H; Hamase K
    J Chromatogr A; 2020 Aug; 1625():461255. PubMed ID: 32709316
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Separation of 17 DL-amino acids and chiral sequential analysis of peptides by reversed-phase liquid chromatography after labeling with R(-)-4- (3-isothiocyanatopyrrolidin-1-yl)-7-(N, N-dimethylaminosulfonyl)-2,1,3-benzoxadiazole.
    Toyo'oka T; Tomoi N; Oe T; Miyahara T
    Anal Biochem; 1999 Dec; 276(1):48-58. PubMed ID: 10585743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amino acid analysis using core-shell particle column.
    Song Y; Funatsu T; Tsunoda M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2013 May; 927():214-7. PubMed ID: 23022276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.