BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30305777)

  • 1. Optimization of Variance Reduction Techniques used in EGSnrc Monte Carlo Codes.
    Shanmugasundaram S; Chandrasekaran S
    J Med Phys; 2018; 43(3):185-194. PubMed ID: 30305777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Efficiency Studying of an Ion Chamber Simulation Using Vriance Reduction Techniques with EGSnrc.
    L T C; L A M; C E V A
    J Biomed Phys Eng; 2019 Jun; 9(3):259-266. PubMed ID: 31341871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of the EGSnrc code egs_chamber for fast fluence calculations of charged particles.
    Failing T; Hartmann GH; Hensley FW; Keil B; Zink K
    Z Med Phys; 2022 Nov; 32(4):417-427. PubMed ID: 35643800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency improvements for ion chamber calculations in high energy photon beams.
    Wulff J; Zink K; Kawrakow I
    Med Phys; 2008 Apr; 35(4):1328-36. PubMed ID: 18491527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comparison between Electron Gamma Shower, National Research Council/Easy Particle Propagation (EGSnrc/Epp) and Monte Carlo N-Particle Transport Code (MCNP) in Simulation of the INTRABEAM ® System with Spherical Applicators.
    Tegaw EM; Geraily G; Etesami SM; Gholami S; Ghanbari H; Farzin M; Tadesse GF; Shojaei M
    J Biomed Phys Eng; 2021 Feb; 11(1):47-54. PubMed ID: 33564639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast, accurate photon beam accelerator modeling using BEAMnrc: a systematic investigation of efficiency enhancing methods and cross-section data.
    Fragoso M; Kawrakow I; Faddegon BA; Solberg TD; Chetty IJ
    Med Phys; 2009 Dec; 36(12):5451-66. PubMed ID: 20095258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A PENELOPE-based system for the automated Monte Carlo simulation of clinacs and voxelized geometries-application to far-from-axis fields.
    Sempau J; Badal A; Brualla L
    Med Phys; 2011 Nov; 38(11):5887-95. PubMed ID: 22047353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of kQmsr,Q0fmsr,fref factors for ion chambers used in the calibration of Leksell Gamma Knife Perfexion model using EGSnrc and PENELOPE Monte Carlo codes.
    Mirzakhanian L; Benmakhlouf H; Tessier F; Seuntjens J
    Med Phys; 2018 Apr; 45(4):1748-1757. PubMed ID: 29468677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An EGSnrc Monte Carlo study of the microionization chamber for reference dosimetry of narrow irregular IMRT beamlets.
    Capote R; Sánchez-Doblado F; Leal A; Lagares JI; Arráns R; Hartmann GH
    Med Phys; 2004 Sep; 31(9):2416-22. PubMed ID: 15487721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitive volume effects on Monte Carlo calculated ion chamber response in magnetic fields.
    Malkov VN; Rogers DWO
    Med Phys; 2017 Sep; 44(9):4854-4858. PubMed ID: 28636763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone and mucosal dosimetry in skin radiation therapy: a Monte Carlo study using kilovoltage photon and megavoltage electron beams.
    Chow JC; Jiang R
    Phys Med Biol; 2012 Jun; 57(12):3885-99. PubMed ID: 22642985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a GPU-superposition Monte Carlo code for fast dose calculation in magnetic fields.
    Li Y; Sun W; Liu H; Ding S; Wang B; Huang X; Song T
    Phys Med Biol; 2022 Jun; 67(12):. PubMed ID: 35588723
    [No Abstract]   [Full Text] [Related]  

  • 13. Ion chamber and film-based quality assurance of mixed electron-photon radiation therapy.
    Heng VJ; Serban M; Seuntjens J; Renaud MA
    Med Phys; 2021 Sep; 48(9):5382-5395. PubMed ID: 34224144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An inter-comparison between accuracy of EGSnrc and MCNPX Monte Carlo codes in dosimetric characterization of intraoperative electron beam.
    Lashkari S; Baghani HR; Tavakoli MB; Mahdavi SR
    Comput Biol Med; 2021 Jan; 128():104113. PubMed ID: 33197735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy of the electron transport in mcnp5 and its suitability for ionization chamber response simulations: A comparison with the egsnrc and penelope codes.
    Koivunoro H; Siiskonen T; Kotiluoto P; Auterinen I; Hippelainen E; Savolainen S
    Med Phys; 2012 Mar; 39(3):1335-44. PubMed ID: 22380366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technical Note: On the efficiency of variance reduction techniques for Monte Carlo estimates of imaging noise.
    Sharma D; Sempau J; Badano A
    Med Phys; 2018 Feb; 45(2):629-634. PubMed ID: 29080289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental verification of EGSnrc Monte Carlo calculated depth doses within a realistic parallel magnetic field in a polystyrene phantom.
    Ghila A; Steciw S; Fallone BG; Rathee S
    Med Phys; 2017 Sep; 44(9):4804-4815. PubMed ID: 28626920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Output correction factors for nine small field detectors in 6 MV radiation therapy photon beams: a PENELOPE Monte Carlo study.
    Benmakhlouf H; Sempau J; Andreo P
    Med Phys; 2014 Apr; 41(4):041711. PubMed ID: 24694131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncertainties in Monte Carlo-based absorbed dose calculations for an experimental benchmark.
    Renner F; Wulff J; Kapsch RP; Zink K
    Phys Med Biol; 2015 Oct; 60(19):7637-53. PubMed ID: 26389610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of penh, fluka, and Geant4/topas for absorbed dose calculations in air cavities representing ionization chambers in high-energy photon and proton beams.
    Baumann KS; Horst F; Zink K; Gomà C
    Med Phys; 2019 Oct; 46(10):4639-4653. PubMed ID: 31350915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.