BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 30305885)

  • 1. Structural stability of DNA origami nanostructures under application-specific conditions.
    Ramakrishnan S; Ijäs H; Linko V; Keller A
    Comput Struct Biotechnol J; 2018; 16():342-349. PubMed ID: 30305885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Staple Age on DNA Origami Nanostructure Assembly and Stability.
    Kielar C; Xin Y; Xu X; Zhu S; Gorin N; Grundmeier G; Möser C; Smith DM; Keller A
    Molecules; 2019 Jul; 24(14):. PubMed ID: 31315177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advancing the Utility of DNA Origami Technique through Enhanced Stability of DNA-Origami-Based Assemblies.
    Manuguri S; Nguyen MK; Loo J; Natarajan AK; Kuzyk A
    Bioconjug Chem; 2023 Jan; 34(1):6-17. PubMed ID: 35984467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cation-Induced Stabilization and Denaturation of DNA Origami Nanostructures in Urea and Guanidinium Chloride.
    Ramakrishnan S; Krainer G; Grundmeier G; Schlierf M; Keller A
    Small; 2017 Nov; 13(44):. PubMed ID: 29024433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superstructure-dependent stability of DNA origami nanostructures in the presence of chaotropic denaturants.
    Hanke M; Dornbusch D; Tomm E; Grundmeier G; Fahmy K; Keller A
    Nanoscale; 2023 Oct; 15(41):16590-16600. PubMed ID: 37747200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Application of DNA origami in nanobiomedicine].
    Wang J; Zhang P; Xia Q; Wei Y; Chen W; Wang J; Li P; Li B; Zhou X
    Nan Fang Yi Ke Da Xue Xue Bao; 2021 Jun; 41(6):960-964. PubMed ID: 34238752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unravelling the Drug Encapsulation Ability of Functional DNA Origami Nanostructures: Current Understanding and Future Prospects on Targeted Drug Delivery.
    Ghosal S; Bag S; Bhowmik S
    Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37111997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of DNA Origami Nanostructures in Physiological Media: The Role of Molecular Interactions.
    Linko V; Keller A
    Small; 2023 Aug; 19(34):e2301935. PubMed ID: 37093216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed Protein Adsorption Through DNA Origami Masks.
    Ramakrishnan S; Grundmeier G; Keller A
    Methods Mol Biol; 2018; 1811():253-262. PubMed ID: 29926458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Building DNA nanostructures for molecular computation, templated assembly, and biological applications.
    Rangnekar A; LaBean TH
    Acc Chem Res; 2014 Jun; 47(6):1778-88. PubMed ID: 24720350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryopreservation of DNA Origami Nanostructures.
    Xin Y; Kielar C; Zhu S; Sikeler C; Xu X; Möser C; Grundmeier G; Liedl T; Heuer-Jungemann A; Smith DM; Keller A
    Small; 2020 Apr; 16(13):e1905959. PubMed ID: 32130783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA Origami-Mediated Substrate Nanopatterning of Inorganic Structures for Sensing Applications.
    Piskunen P; Shen B; Julin S; Ijäs H; Toppari JJ; Kostiainen MA; Linko V
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31609310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-Specific Synthesis of Silica Nanostructures on DNA Origami Templates.
    Shang Y; Li N; Liu S; Wang L; Wang ZG; Zhang Z; Ding B
    Adv Mater; 2020 May; 32(21):e2000294. PubMed ID: 32301202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimuli-Responsive DNA Origami Nanodevices and Their Biological Applications.
    Pitikultham P; Wang Z; Wang Y; Shang Y; Jiang Q; Ding B
    ChemMedChem; 2022 Jan; 17(1):e202100635. PubMed ID: 34729948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advancing Biophysics Using DNA Origami.
    Engelen W; Dietz H
    Annu Rev Biophys; 2021 May; 50():469-492. PubMed ID: 33646812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gradient-mixing LEGO robots for purifying DNA origami nanostructures of multiple components by rate-zonal centrifugation.
    Sentosa J; Djutanta F; Horne B; Showkeir D; Rezvani R; Leff C; Pradhan S; Hariadi RF
    PLoS One; 2023; 18(7):e0283134. PubMed ID: 37467178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regular Nanoscale Protein Patterns via Directed Adsorption through Self-Assembled DNA Origami Masks.
    Ramakrishnan S; Subramaniam S; Stewart AF; Grundmeier G; Keller A
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31239-31247. PubMed ID: 27779405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directional Assembly of Nanoparticles by DNA Shapes: Towards Designed Architectures and Functionality.
    Ma N; Minevich B; Liu J; Ji M; Tian Y; Gang O
    Top Curr Chem (Cham); 2020 Mar; 378(2):36. PubMed ID: 32221698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA origami: an outstanding platform for functions in nanophotonics and cancer therapy.
    Dai L; Liu P; Hu X; Zhao X; Shao G; Tian Y
    Analyst; 2021 Mar; 146(6):1807-1819. PubMed ID: 33595553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA origami-based protein networks: from basic construction to emerging applications.
    Kong G; Xiong M; Liu L; Hu L; Meng HM; Ke G; Zhang XB; Tan W
    Chem Soc Rev; 2021 Feb; 50(3):1846-1873. PubMed ID: 33306073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.