BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30306200)

  • 1. Functions of aldehyde reductases from Saccharomyces cerevisiae in detoxification of aldehyde inhibitors and their biotechnological applications.
    Wang H; Li Q; Kuang X; Xiao D; Han X; Hu X; Li X; Ma M
    Appl Microbiol Biotechnol; 2018 Dec; 102(24):10439-10456. PubMed ID: 30306200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. YNL134C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity for detoxification of furfural derived from lignocellulosic biomass.
    Zhao X; Tang J; Wang X; Yang R; Zhang X; Gu Y; Li X; Ma M
    Yeast; 2015 May; 32(5):409-22. PubMed ID: 25656244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. YMR152W from Saccharomyces cerevisiae encoding a novel aldehyde reductase for detoxification of aldehydes derived from lignocellulosic biomass.
    Ouyang Y; Li Q; Kuang X; Wang H; Wu J; Ayepa E; Chen H; Abrha GT; Zhang Z; Li X; Ma M
    J Biosci Bioeng; 2021 Jan; 131(1):39-46. PubMed ID: 32967812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion.
    Liu ZL; Moon J
    Gene; 2009 Oct; 446(1):1-10. PubMed ID: 19577617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. YKL071W from Saccharomyces cerevisiae encodes a novel aldehyde reductase for detoxification of glycolaldehyde and furfural derived from lignocellulose.
    Wang H; Ouyang Y; Zhou C; Xiao D; Guo Y; Wu L; Li X; Gu Y; Xiang Q; Zhao K; Yu X; Zou L; Ma M
    Appl Microbiol Biotechnol; 2017 Dec; 101(23-24):8405-8418. PubMed ID: 29034432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae.
    Moon J; Liu ZL
    Yeast; 2015 Apr; 32(4):399-407. PubMed ID: 25656103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New insights into two yeast BDHs from the PDH subfamily as aldehyde reductases in context of detoxification of lignocellulosic aldehyde inhibitors.
    Kuang X; Ouyang Y; Guo Y; Li Q; Wang H; Abrha GT; Ayepa E; Gu Y; Li X; Chen Q; Ma M
    Appl Microbiol Biotechnol; 2020 Aug; 104(15):6679-6692. PubMed ID: 32556414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. YKL107W from Saccharomyces cerevisiae encodes a novel aldehyde reductase for detoxification of acetaldehyde, glycolaldehyde, and furfural.
    Wang H; Li Q; Zhang Z; Zhou C; Ayepa E; Abrha GT; Han X; Hu X; Yu X; Xiang Q; Li X; Gu Y; Zhao K; Xie C; Chen Q; Ma M
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5699-5713. PubMed ID: 31115629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-depth understanding of molecular mechanisms of aldehyde toxicity to engineer robust Saccharomyces cerevisiae.
    Jayakody LN; Jin YS
    Appl Microbiol Biotechnol; 2021 Apr; 105(7):2675-2692. PubMed ID: 33743026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GRE2 from Scheffersomyces stipitis as an aldehyde reductase contributes tolerance to aldehyde inhibitors derived from lignocellulosic biomass.
    Wang X; Ma M; Liu ZL; Xiang Q; Li X; Liu N; Zhang X
    Appl Microbiol Biotechnol; 2016 Aug; 100(15):6671-6682. PubMed ID: 27003269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. YLL056C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity.
    Wang HY; Xiao DF; Zhou C; Wang LL; Wu L; Lu YT; Xiang QJ; Zhao K; Li X; Ma M-
    Appl Microbiol Biotechnol; 2017 Jun; 101(11):4507-4520. PubMed ID: 28265724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic mechanism of an aldehyde reductase of Saccharomyces cerevisiae that relieves toxicity of furfural and 5-hydroxymethylfurfural.
    Jordan DB; Braker JD; Bowman MJ; Vermillion KE; Moon J; Liu ZL
    Biochim Biophys Acta; 2011 Dec; 1814(12):1686-94. PubMed ID: 21890004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae.
    Liu ZL; Moon J; Andersh BJ; Slininger PJ; Weber S
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):743-53. PubMed ID: 18810428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and functional evaluation of the reductases and dehydrogenases from Saccharomyces cerevisiae involved in vanillin resistance.
    Wang X; Liang Z; Hou J; Bao X; Shen Y
    BMC Biotechnol; 2016 Apr; 16():31. PubMed ID: 27036139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of Gre2p improves tolerance of engineered xylose-fermenting Saccharomyces cerevisiae to glycolaldehyde under xylose metabolism.
    Jayakody LN; Turner TL; Yun EJ; Kong II; Liu JJ; Jin YS
    Appl Microbiol Biotechnol; 2018 Sep; 102(18):8121-8133. PubMed ID: 30027490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein expression analysis revealed a fine-tuned mechanism of in situ detoxification pathway for the tolerant industrial yeast Saccharomyces cerevisiae.
    Liu ZL; Huang X; Zhou Q; Xu J
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5781-5796. PubMed ID: 31139900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid by Saccharomyces cerevisiae yields less toxic products.
    Adeboye PT; Bettiga M; Aldaeus F; Larsson PT; Olsson L
    Microb Cell Fact; 2015 Sep; 14():149. PubMed ID: 26392265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae.
    Lee SH; Kodaki T; Park YC; Seo JH
    J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae.
    Krahulec S; Klimacek M; Nidetzky B
    Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered NADH-dependent GRE2 from Saccharomyces cerevisiae by directed enzyme evolution enhances HMF reduction using additional cofactor NADPH.
    Moon J; Liu ZL
    Enzyme Microb Technol; 2012 Feb; 50(2):115-20. PubMed ID: 22226197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.