BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 30306392)

  • 1. Quasi-SMILES: quantitative structure-activity relationships to predict anticancer activity.
    Toropova AP; Toropov AA
    Mol Divers; 2019 May; 23(2):403-412. PubMed ID: 30306392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. coral Software: QSAR for Anticancer Agents.
    Benfenati E; Toropov AA; Toropova AP; Manganaro A; Gonella Diaza R
    Chem Biol Drug Des; 2011 Jun; 77(6):471-6. PubMed ID: 21435183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-QSAR in cell biology: Model of cell viability as a mathematical function of available eclectic data.
    Toropova AP; Toropov AA
    J Theor Biol; 2017 Mar; 416():113-118. PubMed ID: 28087422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SMILES-based QSAR approaches for carcinogenicity and anticancer activity: comparison of correlation weights for identical SMILES attributes.
    Toropov AA; Toropova AP; Benfenati E; Gini G; Leszczynska D; Leszczynski J
    Anticancer Agents Med Chem; 2011 Dec; 11(10):974-82. PubMed ID: 22023046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of Quasi-SMILES and Monte Carlo Optimization to Develop Quantitative Feature Property/Activity Relationships (QFPR/QFAR) for Nanomaterials.
    Toropov AA; Rallo R; Toropova AP
    Curr Top Med Chem; 2015; 15(18):1837-44. PubMed ID: 25961527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutagenicity: QSAR - quasi-QSAR - nano-QSAR.
    Toropova AP; Toropov AA
    Mini Rev Med Chem; 2015; 15(8):608-21. PubMed ID: 25694078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutagenicity, anticancer activity and blood brain barrier: similarity and dissimilarity of molecular alerts.
    Toropov AA; Toropova AP; Benfenati E; Salmona M
    Toxicol Mech Methods; 2018 Jun; 28(5):321-327. PubMed ID: 29281931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano-QSAR: Model of mutagenicity of fullerene as a mathematical function of different conditions.
    Toropova AP; Toropov AA; Veselinović AM; Veselinović JB; Benfenati E; Leszczynska D; Leszczynski J
    Ecotoxicol Environ Saf; 2016 Feb; 124():32-36. PubMed ID: 26452192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CORAL: Predictive models for cytotoxicity of functionalized nanozeolites based on quasi-SMILES.
    Leone C; Bertuzzi EE; Toropova AP; Toropov AA; Benfenati E
    Chemosphere; 2018 Nov; 210():52-56. PubMed ID: 29986223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quasi-SMILES-Based Nano-Quantitative Structure-Activity Relationship Model to Predict the Cytotoxicity of Multiwalled Carbon Nanotubes to Human Lung Cells.
    Trinh TX; Choi JS; Jeon H; Byun HG; Yoon TH; Kim J
    Chem Res Toxicol; 2018 Mar; 31(3):183-190. PubMed ID: 29439565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CORAL: Binary classifications (active/inactive) for drug-induced liver injury.
    Toropova AP; Toropov AA
    Toxicol Lett; 2017 Feb; 268():51-57. PubMed ID: 28111161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation intensity index: Building up models for mutagenicity of silver nanoparticles.
    Toropov AA; Toropova AP
    Sci Total Environ; 2020 Oct; 737():139720. PubMed ID: 32554036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QSAR as a random event: modeling of nanoparticles uptake in PaCa2 cancer cells.
    Toropov AA; Toropova AP; Puzyn T; Benfenati E; Gini G; Leszczynska D; Leszczynski J
    Chemosphere; 2013 Jun; 92(1):31-7. PubMed ID: 23566368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of retention characteristics of heterocyclic compounds.
    Nesměrák K; Toropov AA; Toropova AP; Yildiz I; Yalcin I; Brozikova M; Klimešová V; Waisser K
    Anal Bioanal Chem; 2015 Dec; 407(30):9185-9. PubMed ID: 26427498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of antimicrobial activity of large pool of peptides using quasi-SMILES.
    Toropova AP; Toropov AA; Benfenati E; Leszczynska D; Leszczynski J
    Biosystems; 2018 Jul; 169-170():5-12. PubMed ID: 29800627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomaterials: Quasi-SMILES as a flexible basis for regulation and environmental risk assessment.
    Toropova AP; Toropov AA
    Sci Total Environ; 2022 Jun; 823():153747. PubMed ID: 35149067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CORAL: Monte Carlo Method to Predict Endpoints for Medical Chemistry.
    Toropova AP; Toropov AA
    Mini Rev Med Chem; 2018 Feb; 18(5):382-391. PubMed ID: 28971771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does the Index of Ideality of Correlation Detect the Better Model Correctly?
    Toropova AP; Toropov AA
    Mol Inform; 2019 Aug; 38(8-9):e1800157. PubMed ID: 30725522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation intensity index: mathematical modeling of cytotoxicity of metal oxide nanoparticles.
    Ahmadi S; Toropova AP; Toropov AA
    Nanotoxicology; 2020 Oct; 14(8):1118-1126. PubMed ID: 32877261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of the index of ideality of correlation to improve predictive potential for biochemical endpoints.
    Toropov AA; Toropova AP
    Toxicol Mech Methods; 2019 Jan; 29(1):43-52. PubMed ID: 30064284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.