These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 30306465)
1. Effectiveness of a novel real-time dosimeter in interventional radiology: a comparison of new and old radiation sensors. Inaba Y; Nakamura M; Chida K; Zuguchi M Radiol Phys Technol; 2018 Dec; 11(4):445-450. PubMed ID: 30306465 [TBL] [Abstract][Full Text] [Related]
2. Real-time patient radiation dosimeter for use in interventional radiology. Chida K; Kato M; Inaba Y; Kobayashi R; Nakamura M; Abe Y; Zuguchi M Phys Med; 2016 Nov; 32(11):1475-1478. PubMed ID: 27825653 [TBL] [Abstract][Full Text] [Related]
3. Development of Novel Real-Time Radiation Systems Using 4-Channel Sensors. Inaba Y; Nakamura M; Zuguchi M; Chida K Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32403386 [TBL] [Abstract][Full Text] [Related]
4. An initial investigation of a wireless patient radiation dosimeter for use in interventional radiology. Inaba Y; Chida K; Murabayashi Y; Endo M; Otomo K; Zuguchi M Radiol Phys Technol; 2020 Sep; 13(3):321-326. PubMed ID: 32715378 [TBL] [Abstract][Full Text] [Related]
5. Novel Dosimeter Using a Nontoxic Phosphor for Real-Time Monitoring of Patient Radiation Dose in Interventional Radiology. Nakamura M; Chida K; Zuguchi M AJR Am J Roentgenol; 2015 Aug; 205(2):W202-6. PubMed ID: 26204308 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of a New Real-Time Dosimeter Sensor for Interventional Radiology Staff. Hattori K; Inaba Y; Kato T; Fujisawa M; Yasuno H; Yamada A; Haga Y; Suzuki M; Zuguchi M; Chida K Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617110 [TBL] [Abstract][Full Text] [Related]
7. New real-time patient radiation dosimeter for use in radiofrequency catheter ablation. Kato M; Chida K; Nakamura M; Toyoshima H; Terata K; Abe Y J Radiat Res; 2019 Mar; 60(2):215-220. PubMed ID: 30624747 [TBL] [Abstract][Full Text] [Related]
8. Feasibility of a semiconductor dosimeter to monitor skin dose in interventional radiology. Meyer P; Regal R; Jung M; Siffert P; Mertz L; Constantinesco A Med Phys; 2001 Oct; 28(10):2002-6. PubMed ID: 11695763 [TBL] [Abstract][Full Text] [Related]
9. A comparison of entrance skin dose delivered by clinical angiographic c-arms using the real-time dosimeter: the MOSkin. Thorpe NK; Cutajar D; Lian C; Pitney M; Friedman D; Perevertaylo V; Rosenfeld A Australas Phys Eng Sci Med; 2016 Jun; 39(2):423-30. PubMed ID: 27098157 [TBL] [Abstract][Full Text] [Related]
10. Skin dose measurement for patients using imaging plates in interventional radiology procedures. Ohuchi H; Satoh T; Eguchi Y; Kaga Y; Arai T; Suzuki S; Yamadera A Health Phys; 2007 Jul; 93(1):78-86. PubMed ID: 17563495 [TBL] [Abstract][Full Text] [Related]
11. Red emission phosphor for real-time skin dosimeter for fluoroscopy and interventional radiology. Nakamura M; Chida K; Zuguchi M Med Phys; 2014 Oct; 41(10):101913. PubMed ID: 25281965 [TBL] [Abstract][Full Text] [Related]
12. [Measurement of the Dose Rate Using Dosimeters in Interventional Radiology and Its Difficulty]. Yoshida H; Takahashi C; Narita N; Mizusawa Y; Sekiya M; Ohkubo M Nihon Hoshasen Gijutsu Gakkai Zasshi; 2016 Jan; 72(1):63-72. PubMed ID: 26796935 [TBL] [Abstract][Full Text] [Related]
13. Performance of the DOSIRIS™ eye lens dosimeter. Ishii H; Haga Y; Sota M; Inaba Y; Chida K J Radiol Prot; 2019 Sep; 39(3):N19-N26. PubMed ID: 31167175 [TBL] [Abstract][Full Text] [Related]
14. Evaluating the performance of a MOSFET dosimeter at diagnostic X-ray energies for interventional radiology. Chida K; Inaba Y; Masuyama H; Yanagawa I; Mori I; Saito H; Maruoka S; Zuguchi M Radiol Phys Technol; 2009 Jan; 2(1):58-61. PubMed ID: 20821130 [TBL] [Abstract][Full Text] [Related]
15. [Patient dose measurement with fluorescent glass dosimeter: characteristics evaluation and patient skin dose measurement in abdominal interventional radiology]. Komiya I; Shirasaka T; Umezu Y; Tachibana M; Izumi T Nihon Hoshasen Gijutsu Gakkai Zasshi; 2004 Feb; 60(2):270-7. PubMed ID: 15054316 [TBL] [Abstract][Full Text] [Related]
16. Characterization of a MOSkin detector for in vivo skin dose measurements during interventional radiology procedures. Safari MJ; Wong JH; Ng KH; Jong WL; Cutajar DL; Rosenfeld AB Med Phys; 2015 May; 42(5):2550-8. PubMed ID: 25979047 [TBL] [Abstract][Full Text] [Related]
17. Fundamental study of a real-time occupational dosimetry system for interventional radiology staff. Inaba Y; Chida K; Kobayashi R; Kaga Y; Zuguchi M J Radiol Prot; 2014 Sep; 34(3):N65-71. PubMed ID: 25119299 [TBL] [Abstract][Full Text] [Related]
18. WALL THICKNESS OPTIMISATION OF AN IONISATION CHAMBER FOR DIRECTIONAL DOSE EQUIVALENT RATE MEASUREMENT AT LOW AND MEDIUM PHOTON ENERGIES. Singh SK; Kulkarni MS Radiat Prot Dosimetry; 2019 Jun; 183(4):468-473. PubMed ID: 30260449 [TBL] [Abstract][Full Text] [Related]
19. [Measurement of the air kerma using dosimeters embedded in an acrylic phantom in interventional radiology.]. Kawabe A; Shibuya K; Takeda Y Igaku Butsuri; 2006; 26(1):39-46. PubMed ID: 16788288 [TBL] [Abstract][Full Text] [Related]
20. [Measurement of patient skin dose in interventional radiology using passive integrating dosimeter]. Iida H; Noto K; Nakagawa H; Horii J; Chabatake M; Yamamoto T; Kobayashi I Nihon Hoshasen Gijutsu Gakkai Zasshi; 2006 Feb; 62(2):305-14. PubMed ID: 16520715 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]