BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 30306484)

  • 1. Intelligent HMI in Orthopedic Navigation.
    Wang G; Li L; Xing S; Ding H
    Adv Exp Med Biol; 2018; 1093():207-224. PubMed ID: 30306484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the 3D Augmented Reality-Guided Intraoperative Positioning of Dental Implants in Edentulous Mandibular Models.
    Jiang W; Ma L; Zhang B; Fan Y; Qu X; Zhang X; Liao H
    Int J Oral Maxillofac Implants; 2018; 33(6):1219-1228. PubMed ID: 30427952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid navigation interface for orthopedic and trauma surgery.
    Traub J; Stefan P; Heining SM; Sielhorst T; Riquarts C; Euler E; Navab N
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):373-80. PubMed ID: 17354912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Visualization and Augmented Reality for Orthopedics.
    Ma L; Fan Z; Ning G; Zhang X; Liao H
    Adv Exp Med Biol; 2018; 1093():193-205. PubMed ID: 30306483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation.
    Wang J; Suenaga H; Liao H; Hoshi K; Yang L; Kobayashi E; Sakuma I
    Comput Med Imaging Graph; 2015 Mar; 40():147-59. PubMed ID: 25465067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [IMMERSIVE SURGICAL NAVIGATION USING SPATIAL INTERACTIVE VIRTUAL REALITY AND HOLOGRAPHIC AUGMENTED REALITY].
    Sugimoto M; Shiga Y; Abe M; Kameyama S; Azuma T
    Nihon Geka Gakkai Zasshi; 2016 Sep; 117(5):387-94. PubMed ID: 30169000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effectiveness of a Novel Augmented Reality-Based Navigation System in Treatment of Orbital Hypertelorism.
    Zhu M; Chai G; Lin L; Xin Y; Tan A; Bogari M; Zhang Y; Li Q
    Ann Plast Surg; 2016 Dec; 77(6):662-668. PubMed ID: 26545227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a portable image overlay projector for the visualisation of surgical navigation data: phantom studies.
    Gavaghan K; Oliveira-Santos T; Peterhans M; Reyes M; Kim H; Anderegg S; Weber S
    Int J Comput Assist Radiol Surg; 2012 Jul; 7(4):547-56. PubMed ID: 22015571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prospective Evaluation of Precision Multimodal Gallbladder Surgery Navigation: Virtual Reality, Near-infrared Fluorescence, and X-ray-based Intraoperative Cholangiography.
    Diana M; Soler L; Agnus V; D'Urso A; Vix M; Dallemagne B; Faucher V; Roy C; Mutter D; Marescaux J; Pessaux P
    Ann Surg; 2017 Nov; 266(5):890-897. PubMed ID: 28742709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surgical Navigation in Orthopedics: Workflow and System Review.
    Ewurum CH; Guo Y; Pagnha S; Feng Z; Luo X
    Adv Exp Med Biol; 2018; 1093():47-63. PubMed ID: 30306471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Augmented Reality Visualization for Image-Guided Surgery: A Validation Study Using a Three-Dimensional Printed Phantom.
    Glas HH; Kraeima J; van Ooijen PMA; Spijkervet FKL; Yu L; Witjes MJH
    J Oral Maxillofac Surg; 2021 Sep; 79(9):1943.e1-1943.e10. PubMed ID: 34033801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an inside-out augmented reality technique for neurosurgical navigation.
    Dho YS; Park SJ; Choi H; Kim Y; Moon HC; Kim KM; Kang H; Lee EJ; Kim MS; Kim JW; Kim YH; Kim YG; Park CK
    Neurosurg Focus; 2021 Aug; 51(2):E21. PubMed ID: 34333463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer-assisted navigation in orthopedic surgery.
    Mavrogenis AF; Savvidou OD; Mimidis G; Papanastasiou J; Koulalis D; Demertzis N; Papagelopoulos PJ
    Orthopedics; 2013 Aug; 36(8):631-42. PubMed ID: 23937743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of advances in image-guided orthopedic surgery.
    Fan X; Zhu Q; Tu P; Joskowicz L; Chen X
    Phys Med Biol; 2023 Jan; 68(2):. PubMed ID: 36595258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IBIS: an OR ready open-source platform for image-guided neurosurgery.
    Drouin S; Kochanowska A; Kersten-Oertel M; Gerard IJ; Zelmann R; De Nigris D; Bériault S; Arbel T; Sirhan D; Sadikot AF; Hall JA; Sinclair DS; Petrecca K; DelMaestro RF; Collins DL
    Int J Comput Assist Radiol Surg; 2017 Mar; 12(3):363-378. PubMed ID: 27581336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementation of augmented reality support in spine surgery.
    Carl B; Bopp M; Saß B; Voellger B; Nimsky C
    Eur Spine J; 2019 Jul; 28(7):1697-1711. PubMed ID: 30953169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Projector-Based Augmented Reality Navigation System for Computer-Assisted Surgery.
    Gao Y; Zhao Y; Xie L; Zheng G
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Augmented reality as an aid in maxillofacial surgery: validation of a wearable system allowing maxillary repositioning.
    Badiali G; Ferrari V; Cutolo F; Freschi C; Caramella D; Bianchi A; Marchetti C
    J Craniomaxillofac Surg; 2014 Dec; 42(8):1970-6. PubMed ID: 25441867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image Overlay Surgery Based on Augmented Reality: A Systematic Review.
    Pérez-Pachón L; Poyade M; Lowe T; Gröning F
    Adv Exp Med Biol; 2020; 1260():175-195. PubMed ID: 33211313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical evaluation of augmented reality-based 3D navigation system for brachial plexus tumor surgery.
    Zhao X; Zhao H; Zheng W; Gohritz A; Shen Y; Xu W
    World J Surg Oncol; 2024 Jan; 22(1):20. PubMed ID: 38233922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.