BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 30306486)

  • 1. Intelligent Control for Human-Robot Cooperation in Orthopedics Surgery.
    Kuang S; Tang Y; Lin A; Yu S; Sun L
    Adv Exp Med Biol; 2018; 1093():245-262. PubMed ID: 30306486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variable Admittance Control Based on Fuzzy Reinforcement Learning for Minimally Invasive Surgery Manipulator.
    Du Z; Wang W; Yan Z; Dong W; Wang W
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28417944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential Risk of Intelligent Technologies in Clinical Orthopedics.
    Liu Y
    Adv Exp Med Biol; 2018; 1093():281-288. PubMed ID: 30306488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research on Robot Fuzzy Neural Network Motion System Based on Artificial Intelligence.
    Hu J
    Comput Intell Neurosci; 2022; 2022():4347772. PubMed ID: 35186062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research on spatial motion safety constraints and cooperative control of robot-assisted craniotomy: Beagle model experiment verification.
    Xu C; Lin L; Mar Aung Z; Chai G; Xie L
    Int J Med Robot; 2021 Apr; 17(2):e2231. PubMed ID: 33470010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control design and implementation of a novel master-slave surgery robot system, MicroHand A.
    Sang H; Wang S; Li J; He C; Zhang L; Wang X
    Int J Med Robot; 2011 Sep; 7(3):334-47. PubMed ID: 21732498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a novel intelligent laparoscope system for semi-automatic minimally invasive surgery.
    Sun Y; Pan B; Fu Y; Cao F
    Int J Med Robot; 2020 Feb; 16(1):e2049. PubMed ID: 31677231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human-Inspired Haptic Perception and Control in Robot-Assisted Milling Surgery.
    Dai Y; Xue Y; Zhang J
    IEEE Trans Haptics; 2021; 14(2):359-370. PubMed ID: 33044941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic.
    Li TH; Su YT; Lai SW; Hu JJ
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):736-48. PubMed ID: 21095871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Methods for training of robot-assisted radical prostatectomy].
    Rapoport LM; Bezrukov EA; Tsarichenko DG; Martirosyan GA; Sukhanov RB; Krupinov GE; Slusarenco RI; Morozov AO; Avakyan SK; Sargsyan NA
    Khirurgiia (Mosk); 2019; (1):89-94. PubMed ID: 30789615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable and Intuitive Control of an Intelligent Assist Device.
    Duchaine V; Mayer St-Onge B; Dalong Gao ; Gosselin C
    IEEE Trans Haptics; 2012; 5(2):148-59. PubMed ID: 26964071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fuzzy neural network sliding mode controller for vibration suppression in robotically assisted minimally invasive surgery.
    Sang H; Yang C; Liu F; Yun J; Jin G
    Int J Med Robot; 2016 Dec; 12(4):670-679. PubMed ID: 27921372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vision-based variable impedance control with oscillation observer for respiratory motion compensation during robotic needle insertion: a preliminary test.
    Cho CN; Seo JH; Kim HR; Jung H; Kim KG
    Int J Med Robot; 2015 Dec; 11(4):502-11. PubMed ID: 25640414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A vascular interventional surgical robot based on surgeon's operating skills.
    Yang C; Guo S; Bao X; Xiao N; Shi L; Li Y; Jiang Y
    Med Biol Eng Comput; 2019 Sep; 57(9):1999-2010. PubMed ID: 31346947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive Fuzzy Control for Coordinated Multiple Robots With Constraint Using Impedance Learning.
    Kong L; He W; Yang C; Li Z; Sun C
    IEEE Trans Cybern; 2019 Aug; 49(8):3052-3063. PubMed ID: 30843856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robot-assisted orthopedic surgery.
    Adili A
    Semin Laparosc Surg; 2004 Jun; 11(2):89-98. PubMed ID: 15254647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Online Stability in Human-Robot Cooperation with Admittance Control.
    Dimeas F; Aspragathos N
    IEEE Trans Haptics; 2016; 9(2):267-78. PubMed ID: 26780819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial Fuzzy-PID Gain Scheduling Algorithm Design for Motion Control in Differential Drive Mobile Robotic Platforms.
    Yousfi Allagui N; Salem FA; Aljuaid AM
    Comput Intell Neurosci; 2021; 2021():5542888. PubMed ID: 34707650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motion modelling and error compensation of a cable-driven continuum robot for applications to minimally invasive surgery.
    Qi F; Ju F; Bai D; Wang Y; Chen B
    Int J Med Robot; 2018 Dec; 14(6):e1932. PubMed ID: 30003671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic virtual fixture on the Euclidean group for admittance-type manipulator in deforming environments.
    Zhang D; Zhu Q; Xiong J; Wang L
    Biomed Eng Online; 2014 Apr; 13():51. PubMed ID: 24767578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.