These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30306487)

  • 1. Multilevel Fuzzy Control Based on Force Information in Robot-Assisted Decompressive Laminectomy.
    Qi X; Sun Y; Ma X; Hu Y; Zhang J; Tian W
    Adv Exp Med Biol; 2018; 1093():263-279. PubMed ID: 30306487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. State recognition of decompressive laminectomy with multiple information in robot-assisted surgery.
    Sun Y; Wang L; Jiang Z; Li B; Hu Y; Tian W
    Artif Intell Med; 2020 Jan; 102():101763. PubMed ID: 31980100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grinding trajectory generator in robot-assisted laminectomy surgery.
    Li Q; Du Z; Yu H
    Int J Comput Assist Radiol Surg; 2021 Mar; 16(3):485-494. PubMed ID: 33507483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force-based control of a compact spinal milling robot.
    Wang T; Luan S; Hu L; Liu Z; Li W; Jiang L
    Int J Med Robot; 2010 Jun; 6(2):178-85. PubMed ID: 20336637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collaborative spinal robot system for laminectomy: a preliminary study.
    Li Z; Jiang S; Song X; Liu S; Wang C; Hu L; Li W
    Neurosurg Focus; 2022 Jan; 52(1):E11. PubMed ID: 34973664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robot-assisted laminectomy in spinal surgery: a systematic review.
    Li Z; Yu G; Jiang S; Hu L; Li W
    Ann Transl Med; 2021 Apr; 9(8):715. PubMed ID: 33987413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precise laminae segmentation based on neural network for robot-assisted decompressive laminectomy.
    Li Q; Du Z; Yu H
    Comput Methods Programs Biomed; 2021 Sep; 209():106333. PubMed ID: 34391999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on the accuracy of three-dimensional localization and navigation in robot-assisted spine surgery.
    Chen L; Zhang F; Zhan W; Gan M; Sun L
    Int J Med Robot; 2020 Apr; 16(2):e2071. PubMed ID: 31875428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Single-Level and Multilevel Decompressive Laminectomy for Multilevel Lumbar Spinal Stenosis.
    Adilay U; Guclu B
    World Neurosurg; 2018 Mar; 111():e235-e240. PubMed ID: 29258933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of single-time, multilevel registration in image-guided spinal surgery.
    Papadopoulos EC; Girardi FP; Sama A; Sandhu HS; Cammisa FP
    Spine J; 2005; 5(3):263-7; discussion 268. PubMed ID: 15863081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robotic system for cervical spine surgery.
    Kostrzewski S; Duff JM; Baur C; Olszewski M
    Int J Med Robot; 2012 Jun; 8(2):184-90. PubMed ID: 22190547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning Curve for Lumbar Decompressive Laminectomy in Biportal Endoscopic Spinal Surgery Using the Cumulative Summation Test for Learning Curve.
    Park SM; Kim HJ; Kim GU; Choi MH; Chang BS; Lee CK; Yeom JS
    World Neurosurg; 2019 Feb; 122():e1007-e1013. PubMed ID: 30404053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 6-DOF parallel bone-grinding robot for cervical disc replacement surgery.
    Tian H; Wang C; Dang X; Sun L
    Med Biol Eng Comput; 2017 Dec; 55(12):2107-2121. PubMed ID: 28536978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic stabilization for degenerative lumbar scoliosis in elderly patients.
    Di Silvestre M; Lolli F; Bakaloudis G; Parisini P
    Spine (Phila Pa 1976); 2010 Jan; 35(2):227-34. PubMed ID: 20081518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laminectomy and posterior cervical plating for multilevel cervical spondylotic myelopathy and ossification of the posterior longitudinal ligament: effects on cervical alignment, spinal cord compression, and neurological outcome.
    Houten JK; Cooper PR
    Neurosurgery; 2003 May; 52(5):1081-7; discussion 1087-8. PubMed ID: 12699550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Research on fuzzy proportional-integral-derivative control of master-slave minimally invasive operation robot driver].
    Zhao X; Ren C; Liu H; Li H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Dec; 31(6):1346-9. PubMed ID: 25868257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human-Inspired Haptic Perception and Control in Robot-Assisted Milling Surgery.
    Dai Y; Xue Y; Zhang J
    IEEE Trans Haptics; 2021; 14(2):359-370. PubMed ID: 33044941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluoroscopy-based navigation system in spine surgery.
    Merloz P; Troccaz J; Vouaillat H; Vasile C; Tonetti J; Eid A; Plaweski S
    Proc Inst Mech Eng H; 2007 Oct; 221(7):813-20. PubMed ID: 18019467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experiments on robot-assisted navigated drilling and milling of bones for pedicle screw placement.
    Ortmaier T; Weiss H; Döbele S; Schreiber U
    Int J Med Robot; 2006 Dec; 2(4):350-63. PubMed ID: 17520654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Miniature robotic guidance for spine surgery--introduction of a novel system and analysis of challenges encountered during the clinical development phase at two spine centres.
    Barzilay Y; Liebergall M; Fridlander A; Knoller N
    Int J Med Robot; 2006 Jun; 2(2):146-53. PubMed ID: 17520625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.