These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 30306646)

  • 1. "Genetically Engineered" Biofunctional Triboelectric Nanogenerators Using Recombinant Spider Silk.
    Zhang Y; Zhou Z; Sun L; Liu Z; Xia X; Tao TH
    Adv Mater; 2018 Dec; 30(50):e1805722. PubMed ID: 30306646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De Novo Design of Recombinant Spider Silk Proteins for Material Applications.
    Zheng K; Ling S
    Biotechnol J; 2019 Jan; 14(1):e1700753. PubMed ID: 29781251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Self-Matched" Tribo/Piezoelectric Nanogenerators Using Vapor-Induced Phase-Separated Poly(vinylidene fluoride) and Recombinant Spider Silk.
    Huang T; Zhang Y; He P; Wang G; Xia X; Ding G; Tao TH
    Adv Mater; 2020 Mar; 32(10):e1907336. PubMed ID: 31984557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triboelectric nanogenerators based on graphene oxide coated nanocomposite fibers for biomedical applications.
    Parandeh S; Kharaziha M; Karimzadeh F; Hosseinabadi F
    Nanotechnology; 2020 Sep; 31(38):385402. PubMed ID: 32498060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Processing of recombinant spider silk proteins into tailor-made materials for biomaterials applications.
    Schacht K; Scheibel T
    Curr Opin Biotechnol; 2014 Oct; 29():62-9. PubMed ID: 24657706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Eco-friendly Porous Nanocomposite Fabric-Based Triboelectric Nanogenerator for Efficient Energy Harvesting and Motion Sensing.
    Bai Z; Xu Y; Li J; Zhu J; Gao C; Zhang Y; Wang J; Guo J
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):42880-42890. PubMed ID: 32847347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulose-Based Fully Green Triboelectric Nanogenerators with Output Power Density of 300 W m
    Zhang R; Dahlström C; Zou H; Jonzon J; Hummelgård M; Örtegren J; Blomquist N; Yang Y; Andersson H; Olsen M; Norgren M; Olin H; Wang ZL
    Adv Mater; 2020 Sep; 32(38):e2002824. PubMed ID: 32803872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conferring biological activity to native spider silk: A biofunctionalized protein-based microfiber.
    Wu HC; Quan DN; Tsao CY; Liu Y; Terrell JL; Luo X; Yang JC; Payne GF; Bentley WE
    Biotechnol Bioeng; 2017 Jan; 114(1):83-95. PubMed ID: 27478042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Assembly of Spider Silk-Fusion Proteins Comprising Enzymatic and Fluorescence Activity.
    Humenik M; Mohrand M; Scheibel T
    Bioconjug Chem; 2018 Apr; 29(4):898-904. PubMed ID: 29338201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in production of recombinant spider silk proteins.
    Chung H; Kim TY; Lee SY
    Curr Opin Biotechnol; 2012 Dec; 23(6):957-64. PubMed ID: 22521455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell adhesion and proliferation on RGD-modified recombinant spider silk proteins.
    Wohlrab S; Müller S; Schmidt A; Neubauer S; Kessler H; Leal-Egaña A; Scheibel T
    Biomaterials; 2012 Oct; 33(28):6650-9. PubMed ID: 22727466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Holistically Engineered Polymer-Polymer and Polymer-Ion Interactions in Biocompatible Polyvinyl Alcohol Blends for High-Performance Triboelectric Devices in Self-Powered Wearable Cardiovascular Monitorings.
    Wang R; Mu L; Bao Y; Lin H; Ji T; Shi Y; Zhu J; Wu W
    Adv Mater; 2020 Aug; 32(32):e2002878. PubMed ID: 32596980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered and Laser-Processed Chitosan Biopolymers for Sustainable and Biodegradable Triboelectric Power Generation.
    Wang R; Gao S; Yang Z; Li Y; Chen W; Wu B; Wu W
    Adv Mater; 2018 Mar; 30(11):. PubMed ID: 29349877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant DNA production of spider silk proteins.
    Tokareva O; Michalczechen-Lacerda VA; Rech EL; Kaplan DL
    Microb Biotechnol; 2013 Nov; 6(6):651-63. PubMed ID: 24119078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flame-Retardant Textile-Based Triboelectric Nanogenerators for Fire Protection Applications.
    Cheng R; Dong K; Liu L; Ning C; Chen P; Peng X; Liu D; Wang ZL
    ACS Nano; 2020 Nov; 14(11):15853-15863. PubMed ID: 33155470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Engineered spider silk: the intelligent biomaterial of the future. Part I].
    Florczak A; Piekoś K; Kaźmierska K; Mackiewicz A; Dams-Kozłowska H
    Postepy Hig Med Dosw (Online); 2011 Jun; 65():377-88. PubMed ID: 21734322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Engineered spider silk: the intelligent biomaterial of the future. Part II].
    Kaźmierska K; Florczak A; Piekoś K; Mackiewicz A; Dams-Kozłowska H
    Postepy Hig Med Dosw (Online); 2011 Jun; 65():389-96. PubMed ID: 21734323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spider Silk for Tissue Engineering Applications.
    Salehi S; Koeck K; Scheibel T
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32046280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanogap and Environmentally Stable Triboelectric Nanogenerators Based on Surface Self-Modified Sustainable Films.
    Wu Y; Luo Y; Qu J; Daoud WA; Qi T
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55444-55452. PubMed ID: 33253520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics.
    Fan FR; Tang W; Wang ZL
    Adv Mater; 2016 Jun; 28(22):4283-305. PubMed ID: 26748684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.