These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 30306980)
1. Rationally designing mixed Cu-(μ-O)-M (M = Cu, Ag, Zn, Au) centers over zeolite materials with high catalytic activity towards methane activation. Wang G; Huang L; Chen W; Zhou J; Zheng A Phys Chem Chem Phys; 2018 Nov; 20(41):26522-26531. PubMed ID: 30306980 [TBL] [Abstract][Full Text] [Related]
2. Partial Oxidation of Methane to Methanol on the M-O-Ag/Graphene (M = Ag, Cu) Composite Catalyst: A DFT Study. Yan Z; Xu H; Huang L; Fu H; Li S Langmuir; 2023 Feb; 39(6):2422-2434. PubMed ID: 36734609 [TBL] [Abstract][Full Text] [Related]
3. Effects of single and double active sites of Cu oxide clusters over the MFI zeolite for direct conversion of methane to methanol: DFT calculations. Nunthakitgoson W; Thivasasith A; Maihom T; Wattanakit C Phys Chem Chem Phys; 2021 Jan; 23(3):2500-2510. PubMed ID: 33465219 [TBL] [Abstract][Full Text] [Related]
4. Catalytic cycle of the partial oxidation of methane to methanol over Cu-ZSM-5 revealed using DFT calculations. Yu X; Zhong L; Li S Phys Chem Chem Phys; 2021 Mar; 23(8):4963-4974. PubMed ID: 33621299 [TBL] [Abstract][Full Text] [Related]
5. Methane Activation on H-ZSM-5 Zeolite with Low Copper Loading. The Nature of Active Sites and Intermediates Identified with the Combination of Spectroscopic Methods. Gabrienko AA; Yashnik SA; Kolganov AA; Sheveleva AM; Arzumanov SS; Fedin MV; Tuna F; Stepanov AG Inorg Chem; 2020 Feb; 59(3):2037-2050. PubMed ID: 31971794 [TBL] [Abstract][Full Text] [Related]
6. Molecular insight into the role of zeolite lattice constraints on methane activation over the Cu-O-Cu active site. Mahyuddin MH; Saputro AG; Sukanli RPP; Fathurrahman F; Rizkiana J; Nuruddin A; Dipojono HK Phys Chem Chem Phys; 2022 Feb; 24(7):4196-4203. PubMed ID: 35119442 [TBL] [Abstract][Full Text] [Related]
7. Room-Temperature Activation of the C-H Bond in Methane over Terminal Zn Oda A; Ohkubo T; Yumura T; Kobayashi H; Kuroda Y Inorg Chem; 2019 Jan; 58(1):327-338. PubMed ID: 30495931 [TBL] [Abstract][Full Text] [Related]
8. Modelling on a Biomimetic [Cu-O-Cu] Arora S; Gupta P Chem Asian J; 2024 Jul; 19(14):e202400282. PubMed ID: 38627954 [TBL] [Abstract][Full Text] [Related]
9. Effects of ZSM-5 zeolite confinement on reaction intermediates during dioxygen activation by enclosed dicopper cations. Yumura T; Takeuchi M; Kobayashi H; Kuroda Y Inorg Chem; 2009 Jan; 48(2):508-17. PubMed ID: 19093853 [TBL] [Abstract][Full Text] [Related]
10. Catalytic Performance of a Dicopper-Oxo Complex for Methane Hydroxylation. Hori Y; Shiota Y; Tsuji T; Kodera M; Yoshizawa K Inorg Chem; 2018 Jan; 57(1):8-11. PubMed ID: 29249146 [TBL] [Abstract][Full Text] [Related]
11. Role of tyrosine residue in methane activation at the dicopper site of particulate methane monooxygenase: a density functional theory study. Shiota Y; Juhász G; Yoshizawa K Inorg Chem; 2013 Jul; 52(14):7907-17. PubMed ID: 23808646 [TBL] [Abstract][Full Text] [Related]
12. Comparison of the reactivity of bis(mu-oxo)Cu(II)Cu(III) and Cu(III)Cu(III) species to methane. Shiota Y; Yoshizawa K Inorg Chem; 2009 Feb; 48(3):838-45. PubMed ID: 19113938 [TBL] [Abstract][Full Text] [Related]
13. The conversion of CO2 and CH4 to acetic acid over the Au-exchanged ZSM-5 catalyst: a density functional theory study. Panjan W; Sirijaraensre J; Warakulwit C; Pantu P; Limtrakul J Phys Chem Chem Phys; 2012 Dec; 14(48):16588-94. PubMed ID: 22903398 [TBL] [Abstract][Full Text] [Related]
14. Dioxygen Activation on Cu-MOR Zeolite: Theoretical Insights into the Formation of Cu Mahyuddin MH; Tanaka T; Staykov A; Shiota Y; Yoshizawa K Inorg Chem; 2018 Aug; 57(16):10146-10152. PubMed ID: 30091906 [TBL] [Abstract][Full Text] [Related]
15. Electronic Structure of the [Cu Vogiatzis KD; Li G; Hensen EJM; Gagliardi L; Pidko EA J Phys Chem C Nanomater Interfaces; 2017 Oct; 121(40):22295-22302. PubMed ID: 29051794 [TBL] [Abstract][Full Text] [Related]
16. First-principles investigation of transition metal atom M (M = Cu, Ag, Au) adsorption on CeO2(110). Cui L; Tang Y; Zhang H; Hector LG; Ouyang C; Shi S; Li H; Chen L Phys Chem Chem Phys; 2012 Feb; 14(6):1923-33. PubMed ID: 22231441 [TBL] [Abstract][Full Text] [Related]
17. Theoretical Study of the Oxidation of Methane to Methanol by the [Cu Liu YF; Du L Inorg Chem; 2018 Mar; 57(6):3261-3271. PubMed ID: 29504752 [TBL] [Abstract][Full Text] [Related]
18. Reactivity of C1 surface species formed in methane activation on Zn-modified H-ZSM-5 zeolite. Wu JF; Wang WD; Xu J; Deng F; Wang W Chemistry; 2010 Dec; 16(47):14016-25. PubMed ID: 21038333 [TBL] [Abstract][Full Text] [Related]
19. Methane C-H bond heterolysis versus homolysis on Cu-MFI and Au-MFI. Sajid M; Khan B; Shahzad N J Mol Graph Model; 2023 Jun; 121():108446. PubMed ID: 36898226 [TBL] [Abstract][Full Text] [Related]
20. Mechanistic insight into the formation of acetic acid from the direct conversion of methane and carbon dioxide on zinc-modified H-ZSM-5 zeolite. Wu JF; Yu SM; Wang WD; Fan YX; Bai S; Zhang CW; Gao Q; Huang J; Wang W J Am Chem Soc; 2013 Sep; 135(36):13567-73. PubMed ID: 23981101 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]