These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30307191)

  • 21. Thermodynamic and structural properties of repulsive hard-core Yukawa fluid: integral equation theory, perturbation theory and Monte Carlo simulations.
    Cochran TW; Chiew YC
    J Chem Phys; 2004 Jul; 121(3):1480-6. PubMed ID: 15260693
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phase coexistence in polydisperse multi-Yukawa hard-sphere fluid: high temperature approximation.
    Kalyuzhnyi YV; Hlushak SP
    J Chem Phys; 2006 Jul; 125(3):34501. PubMed ID: 16863356
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accurate statistical associating fluid theory for chain molecules formed from Mie segments.
    Lafitte T; Apostolakou A; Avendaño C; Galindo A; Adjiman CS; Müller EA; Jackson G
    J Chem Phys; 2013 Oct; 139(15):154504. PubMed ID: 24160524
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Equation of state and liquid-vapor equilibrium of polarizable Stockmayer fluids.
    Rocha-Ichante A; del Río F; Ávalos E
    J Chem Phys; 2010 Dec; 133(22):224301. PubMed ID: 21171683
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vapor-liquid equilibria simulation and an equation of state contribution for dipole-quadrupole interactions.
    Vrabec J; Gross J
    J Phys Chem B; 2008 Jan; 112(1):51-60. PubMed ID: 18072758
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A perturbed-chain equation of state based on Wertheim TPT for the fully flexible LJ chains in the fluid and solid phases.
    Mirzaeinia A; Feyzi F
    J Chem Phys; 2020 Apr; 152(13):134502. PubMed ID: 32268737
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical potential perturbation: a method to predict chemical potentials in periodic molecular simulations.
    Moore SG; Wheeler DR
    J Chem Phys; 2011 Mar; 134(11):114514. PubMed ID: 21428639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vapor-liquid equilibrium of hexadecapolar fluids from a perturbation-based equation of state.
    Gámez F; Lago S; del Río F; Benavides AL
    J Chem Phys; 2006 Sep; 125(10):104505. PubMed ID: 16999539
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Density functional theory of inhomogeneous liquids. I. The liquid-vapor interface in Lennard-Jones fluids.
    Lutsko JF
    J Chem Phys; 2007 Aug; 127(5):054701. PubMed ID: 17688351
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lattice Boltzmann method for Lennard-Jones fluids based on the gradient theory of interfaces.
    Kikkinides ES; Kainourgiakis ME; Yiotis AG; Stubos AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056705. PubMed ID: 21230617
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of phase behavior of nanoconfined Lennard-Jones fluids with density functional theory based on the first-order mean spherical approximation.
    Mi J; Tang Y; Zhong C; Li YG
    J Chem Phys; 2006 Apr; 124(14):144709. PubMed ID: 16626233
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Statistical substantiation of the van der Waals theory of inhomogeneous fluids.
    Baidakov VG; Protsenko SP; Chernykh GG; Boltachev GSh
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041601. PubMed ID: 12005831
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Voronoi neighbor statistics of hard-disks and hard-spheres.
    Kumar VS; Kumaran V
    J Chem Phys; 2005 Aug; 123(7):074502. PubMed ID: 16229596
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Discrete perturbation theory for continuous soft-core potential fluids.
    Cervantes LA; Jaime-Muñoz G; Benavides AL; Torres-Arenas J; Sastre F
    J Chem Phys; 2015 Mar; 142(11):114501. PubMed ID: 25796255
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. I. Homogeneous fluids.
    Ghobadi AF; Elliott JR
    J Chem Phys; 2013 Dec; 139(23):234104. PubMed ID: 24359349
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface tension of associating fluids by Monte Carlo simulations.
    Tapia-Medina C; Orea P; Mier-Y-Teran L; Alejandre J
    J Chem Phys; 2004 Feb; 120(5):2337-42. PubMed ID: 15268372
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mean-field theory of inhomogeneous fluids.
    Tschopp SM; Vuijk HD; Sharma A; Brader JM
    Phys Rev E; 2020 Oct; 102(4-1):042140. PubMed ID: 33212746
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phase coexistence in the hard-sphere Yukawa chain fluid with chain length polydispersity: dimer thermodynamic perturbation theory.
    Hlushak SP; Kalyuzhnyi YV
    J Chem Phys; 2008 Dec; 129(22):224901. PubMed ID: 19071943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermodynamic properties of model solids with short-ranged potentials from Monte Carlo simulations and perturbation theory.
    Díez A; Largo J; Solana JR
    J Phys Chem B; 2007 Aug; 111(34):10194-201. PubMed ID: 17683133
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A perturbation method for the Ornstein-Zernike equation and the generic van der Waals equation of state for a square well potential model.
    Eu BC; Qin Y
    J Phys Chem B; 2007 Apr; 111(14):3716-26. PubMed ID: 17388524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.