These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30307216)

  • 1. Zero-point energy conservation in classical trajectory simulations: Application to H
    Lee KLK; Quinn MS; Kolmann SJ; Kable SH; Jordan MJT
    J Chem Phys; 2018 May; 148(19):194113. PubMed ID: 30307216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Plug-and-Play" potentials: Investigating quantum effects in (H2)2-Li(+)-benzene.
    D'Arcy JH; Kolmann SJ; Jordan MJ
    J Chem Phys; 2015 Aug; 143(7):074311. PubMed ID: 26298138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zero-Point Energy Constraint for Unimolecular Dissociation Reactions. Giving Trajectories Multiple Chances To Dissociate Correctly.
    Paul AK; Hase WL
    J Phys Chem A; 2016 Jan; 120(3):372-8. PubMed ID: 26738691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasiclassical trajectory study of the Cl+CH4 reaction dynamics on a quadratic configuration interaction with single and double excitation interpolated potential energy surface.
    Castillo JF; Aoiz FJ; Bañares L
    J Chem Phys; 2006 Sep; 125(12):124316. PubMed ID: 17014183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new (multi-reference configuration interaction) potential energy surface for H
    Wang X; Houston PL; Bowman JM
    Philos Trans A Math Phys Eng Sci; 2017 Apr; 375(2092):. PubMed ID: 28320899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated full-dimensional potential energy surface development and quasi-classical dynamics for the HI(X
    Yin C; Czakó G
    Phys Chem Chem Phys; 2022 Dec; 24(47):29084-29091. PubMed ID: 36440593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamically biased statistical model for the ortho/para conversion in the H2 + H3+ → H3+ + H2 reaction.
    Gómez-Carrasco S; González-Sánchez L; Aguado A; Sanz-Sanz C; Zanchet A; Roncero O
    J Chem Phys; 2012 Sep; 137(9):094303. PubMed ID: 22957565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixed quantum/classical investigation of the photodissociation of NH3(A) and a practical method for maintaining zero-point energy in classical trajectories.
    Bonhommeau D; Truhlar DG
    J Chem Phys; 2008 Jul; 129(1):014302. PubMed ID: 18624475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of a single trajectory to study product energy partitioning in unimolecular dissociation: mass effects for halogenated alkanes.
    Sun L; Park K; Song K; Setser DW; Hase WL
    J Chem Phys; 2006 Feb; 124(6):64313. PubMed ID: 16483213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Method and basis set dependence of anharmonic ground state nuclear wave functions and zero-point energies: application to SSSH.
    Kolmann SJ; Jordan MJ
    J Chem Phys; 2010 Feb; 132(5):054105. PubMed ID: 20136303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Initial Conditions Sampling on Surface Hopping Simulations in the Ultrashort and Picosecond Time Range. Azomethane Photodissociation as a Case Study.
    Pieroni C; Becuzzi F; Creatini L; Granucci G; Persico M
    J Chem Theory Comput; 2023 May; 19(9):2430-2445. PubMed ID: 37071389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formaldehyde roaming dynamics: Comparison of quasi-classical trajectory calculations and experiments.
    Houston PL; Wang X; Ghosh A; Bowman JM; Quinn MS; Kable SH
    J Chem Phys; 2017 Jul; 147(1):013936. PubMed ID: 28688379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the C-H stretch mode excitation in the dynamics of the Cl + CHD3 reaction: a quasi-classical trajectory calculation.
    Espinosa-García J
    J Phys Chem A; 2007 Oct; 111(39):9654-61. PubMed ID: 17824676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative (upsilon, N, Ka) product state distributions near the triplet threshold for the reaction H2CO --> H + HCO measured by Rydberg tagging and laser-induced fluorescence.
    Hopkins WS; Loock HP; Cronin B; Nix MG; Devine AL; Dixon RN; Ashfold MN; Yin HM; Rowling SJ; Büll A; Kable SH
    J Phys Chem A; 2008 Oct; 112(39):9283-9. PubMed ID: 18710191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Primary vs. secondary H-atom abstraction in the Cl-atom reaction with n-pentane.
    Pandit S; Hornung B; Dunning GT; Preston TJ; Brazener K; Orr-Ewing AJ
    Phys Chem Chem Phys; 2017 Jan; 19(2):1614-1626. PubMed ID: 27995254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capture and dissociation in the complex-forming CH + H2 → CH2 + H, CH + H2 reactions.
    González M; Saracibar A; Garcia E
    Phys Chem Chem Phys; 2011 Feb; 13(8):3421-8. PubMed ID: 21212873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Hessian-Free Method to Prevent Zero-Point Energy Leakage in Classical Trajectories.
    Mukherjee S; Barbatti M
    J Chem Theory Comput; 2022 Jul; 18(7):4109-4116. PubMed ID: 35679615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The roaming atom: straying from the reaction path in formaldehyde decomposition.
    Townsend D; Lahankar SA; Lee SK; Chambreau SD; Suits AG; Zhang X; Rheinecker J; Harding LB; Bowman JM
    Science; 2004 Nov; 306(5699):1158-61. PubMed ID: 15498970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roaming Under the Microscope: Trajectory Study of Formaldehyde Dissociation.
    Houston PL; Conte R; Bowman JM
    J Phys Chem A; 2016 Jul; 120(27):5103-14. PubMed ID: 26885745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics investigation of the bimolecular reaction BeH + H(2) --> BeH(2) + H on an ab initio potential-energy surface obtained using neural network methods with both potential and gradient accuracy determination.
    Le HM; Raff LM
    J Phys Chem A; 2010 Jan; 114(1):45-53. PubMed ID: 19852450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.