These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30307220)

  • 1. Linear response approach to active Brownian particles in time-varying activity fields.
    Merlitz H; Vuijk HD; Brader J; Sharma A; Sommer JU
    J Chem Phys; 2018 May; 148(19):194116. PubMed ID: 30307220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluxes of non-interacting and strongly repelling particles through a single conical channel: Analytical results and their numerical tests.
    Berezhkovskii AM; Pustovoit MA; Bezrukov SM
    Chem Phys; 2010 Oct; 375(2-3):523-528. PubMed ID: 21057663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virial pressure in systems of spherical active Brownian particles.
    Winkler RG; Wysocki A; Gompper G
    Soft Matter; 2015 Sep; 11(33):6680-91. PubMed ID: 26221908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brownian systems with spatially inhomogeneous activity.
    Sharma A; Brader JM
    Phys Rev E; 2017 Sep; 96(3-1):032604. PubMed ID: 29346869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear Response Theory and Green-Kubo Relations for Active Matter.
    Dal Cengio S; Levis D; Pagonabarraga I
    Phys Rev Lett; 2019 Dec; 123(23):238003. PubMed ID: 31868450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active Brownian particles and run-and-tumble particles separate inside a maze.
    Khatami M; Wolff K; Pohl O; Ejtehadi MR; Stark H
    Sci Rep; 2016 Nov; 6():37670. PubMed ID: 27876867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Communication: Green-Kubo approach to the average swim speed in active Brownian systems.
    Sharma A; Brader JM
    J Chem Phys; 2016 Oct; 145(16):161101. PubMed ID: 27802667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motility-induced inter-particle correlations and dynamics: a microscopic approach for active Brownian particles.
    Dhont JKG; Park GW; Briels WJ
    Soft Matter; 2021 Jun; 17(22):5613-5632. PubMed ID: 33998621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local stress and pressure in an inhomogeneous system of spherical active Brownian particles.
    Das S; Gompper G; Winkler RG
    Sci Rep; 2019 Apr; 9(1):6608. PubMed ID: 31036857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity-driven phase separation and ordering kinetics of passive particles.
    Dikshit S; Mishra S
    Eur Phys J E Soft Matter; 2022 Mar; 45(3):21. PubMed ID: 35254517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic resetting of active Brownian particles with Lorentz force.
    Abdoli I; Sharma A
    Soft Matter; 2021 Feb; 17(5):1307-1316. PubMed ID: 33313625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase transition and emergence of active temperature in an active Brownian system in underdamped background.
    De Karmakar S; Ganesh R
    Phys Rev E; 2020 Mar; 101(3-1):032121. PubMed ID: 32290015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glassy dynamics of Brownian particles with velocity-dependent friction.
    Yazdi A; Sperl M
    Phys Rev E; 2016 Sep; 94(3-1):032602. PubMed ID: 27739784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress correlation function and linear response of Brownian particles.
    Vogel F; Fuchs M
    Eur Phys J E Soft Matter; 2020 Nov; 43(11):70. PubMed ID: 33190209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical reaction dynamics within anisotropic solvents in time-dependent fields.
    Hershkovits E; Hernandez R
    J Chem Phys; 2005 Jan; 122(1):14509. PubMed ID: 15638676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparisons of characteristic timescales and approximate models for Brownian magnetic nanoparticle rotations.
    Reeves DB; Weaver JB
    J Appl Phys; 2015 Jun; 117(23):233905. PubMed ID: 26130846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Brownian dynamics algorithm for colloids in curved manifolds.
    Castro-Villarreal P; Villada-Balbuena A; Méndez-Alcaraz JM; Castañeda-Priego R; Estrada-Jiménez S
    J Chem Phys; 2014 Jun; 140(21):214115. PubMed ID: 24907998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-dimensional assemblies of charged nanoparticles in water: A simulation study.
    Richardi J
    J Chem Phys; 2009 Jan; 130(4):044701. PubMed ID: 19191398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pseudochemotaxis in inhomogeneous active Brownian systems.
    Vuijk HD; Sharma A; Mondal D; Sommer JU; Merlitz H
    Phys Rev E; 2018 Apr; 97(4-1):042612. PubMed ID: 29758623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase behavior and surface tension of soft active Brownian particles.
    Lauersdorf N; Kolb T; Moradi M; Nazockdast E; Klotsa D
    Soft Matter; 2021 Jul; 17(26):6337-6351. PubMed ID: 34128024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.