BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 30307229)

  • 1. Explicit ions/implicit water generalized Born model for nucleic acids.
    Tolokh IS; Thomas DG; Onufriev AV
    J Chem Phys; 2018 May; 148(19):195101. PubMed ID: 30307229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-shell model of ion-induced nucleic acid condensation.
    Tolokh IS; Drozdetski AV; Pollack L; Baker NA; Onufriev AV
    J Chem Phys; 2016 Apr; 144(15):155101. PubMed ID: 27389241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Explicit ion, implicit water solvation for molecular dynamics of nucleic acids and highly charged molecules.
    Prabhu NV; Panda M; Yang Q; Sharp KA
    J Comput Chem; 2008 May; 29(7):1113-30. PubMed ID: 18074338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-Atom MD Simulation of DNA Condensation Using Ab Initio Derived Force Field Parameters of Cobalt(III)-Hexammine.
    Sun T; Mirzoev A; Korolev N; Lyubartsev AP; Nordenskiöld L
    J Phys Chem B; 2017 Aug; 121(33):7761-7770. PubMed ID: 28746805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrostatic, steric, and hydration interactions favor Na(+) condensation around DNA compared with K(+).
    Savelyev A; Papoian GA
    J Am Chem Soc; 2006 Nov; 128(45):14506-18. PubMed ID: 17090034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Counterion association with native and denatured nucleic acids: an experimental approach.
    Völker J; Klump HH; Manning GS; Breslauer KJ
    J Mol Biol; 2001 Jul; 310(5):1011-25. PubMed ID: 11501992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of Correlation and Solvation in Ion Interactions with B-DNA.
    Sushko ML; Thomas DG; Pabit SA; Pollack L; Onufriev AV; Baker NA
    Biophys J; 2016 Jan; 110(2):315-326. PubMed ID: 26789755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water and ion binding around r(UpA)12 and d(TpA)12 oligomers--comparison with RNA and DNA (CpG)12 duplexes.
    Auffinger P; Westhof E
    J Mol Biol; 2001 Feb; 305(5):1057-72. PubMed ID: 11162114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The hydration of nucleic acid duplexes as assessed by a combination of volumetric and structural techniques.
    Chalikian TV; Völker J; Srinivasan AR; Olson WK; Breslauer KJ
    Biopolymers; 1999 Oct; 50(5):459-71. PubMed ID: 10479730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potentials of mean force between ionizable amino acid side chains in water.
    Masunov A; Lazaridis T
    J Am Chem Soc; 2003 Feb; 125(7):1722-30. PubMed ID: 12580597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulations of A-RNA duplexes. The effect of sequence, solute force field, water model, and salt concentration.
    Beššeová I; Banáš P; Kührová P; Košinová P; Otyepka M; Šponer J
    J Phys Chem B; 2012 Aug; 116(33):9899-916. PubMed ID: 22809319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Why double-stranded RNA resists condensation.
    Tolokh IS; Pabit SA; Katz AM; Chen Y; Drozdetski A; Baker N; Pollack L; Onufriev AV
    Nucleic Acids Res; 2014; 42(16):10823-31. PubMed ID: 25123663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies of base pair sequence effects on DNA solvation based on all-atom molecular dynamics simulations.
    Dixit SB; Mezei M; Beveridge DL
    J Biosci; 2012 Jul; 37(3):399-421. PubMed ID: 22750979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water and ion binding around RNA and DNA (C,G) oligomers.
    Auffinger P; Westhof E
    J Mol Biol; 2000 Jul; 300(5):1113-31. PubMed ID: 10903858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How do non-covalent complexes dissociate in droplets? A case study of the desolvation of dsDNA from a charged aqueous nanodrop.
    Sharawy M; Consta S
    Phys Chem Chem Phys; 2015 Oct; 17(38):25550-62. PubMed ID: 26366993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrolytes in a nanometer slab-confinement: ion-specific structure and solvation forces.
    Kalcher I; Schulz JC; Dzubiella J
    J Chem Phys; 2010 Oct; 133(16):164511. PubMed ID: 21033809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competition among Li(+), Na(+), K(+), and Rb(+) monovalent ions for DNA in molecular dynamics simulations using the additive CHARMM36 and Drude polarizable force fields.
    Savelyev A; MacKerell AD
    J Phys Chem B; 2015 Mar; 119(12):4428-40. PubMed ID: 25751286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of initial ion positions on the interactions of monovalent and divalent ions with a DNA duplex as revealed with atomistic molecular dynamics simulations.
    Robbins TJ; Wang Y
    J Biomol Struct Dyn; 2013; 31(11):1311-23. PubMed ID: 23153112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent electronic polarization effects on Na(+)-Na(+) and Cl(-)-Cl(-) pair associations in aqueous solution.
    Choi CH; Re S; Rashid MH; Li H; Feig M; Sugita Y
    J Phys Chem B; 2013 Aug; 117(31):9273-9. PubMed ID: 23845041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond the continuum: how molecular solvent structure affects electrostatics and hydrodynamics at solid-electrolyte interfaces.
    Bonthuis DJ; Netz RR
    J Phys Chem B; 2013 Oct; 117(39):11397-413. PubMed ID: 24063251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.