BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30307233)

  • 1. Lattice model of ionic liquid confined by metal electrodes.
    Girotto M; Malossi RM; Dos Santos AP; Levin Y
    J Chem Phys; 2018 May; 148(19):193829. PubMed ID: 30307233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalized Helmholtz model describes capacitance profiles of ionic liquids and concentrated aqueous electrolytes.
    Park S; McDaniel JG
    J Chem Phys; 2024 Apr; 160(16):. PubMed ID: 38651812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulations of ionic liquids confined by metal electrodes using periodic Green functions.
    Girotto M; Dos Santos AP; Levin Y
    J Chem Phys; 2017 Aug; 147(7):074109. PubMed ID: 28830185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Double-layer in ionic liquids: paradigm change?
    Kornyshev AA
    J Phys Chem B; 2007 May; 111(20):5545-57. PubMed ID: 17469864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic liquid near a charged wall: structure and capacitance of electrical double layer.
    Fedorov MV; Kornyshev AA
    J Phys Chem B; 2008 Sep; 112(38):11868-72. PubMed ID: 18729396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the camel-to-bell shape transition of the differential capacitance using mean-field theory and Monte Carlo simulations.
    Bossa GV; Caetano DLZ; de Carvalho SJ; Bohinc K; May S
    Eur Phys J E Soft Matter; 2018 Sep; 41(9):113. PubMed ID: 30259300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anomalously large capacitance of an ionic liquid described by the restricted primitive model.
    Loth MS; Skinner B; Shklovskii BI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056102. PubMed ID: 21230540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A classical density functional theory for the asymmetric restricted primitive model of ionic liquids.
    Lu H; Nordholm S; Woodward CE; Forsman J
    J Chem Phys; 2018 May; 148(19):193814. PubMed ID: 30307217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional pattern formation in ionic liquids confined between graphene walls.
    Montes-Campos H; Otero-Mato JM; Méndez-Morales T; Cabeza O; Gallego LJ; Ciach A; Varela LM
    Phys Chem Chem Phys; 2017 Sep; 19(36):24505-24512. PubMed ID: 28890961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of anisotropic ion shape on structure and capacitance of an electric double layer: a Monte Carlo and density functional study.
    Lamperski S; Kaja M; Bhuiyan LB; Wu J; Henderson D
    J Chem Phys; 2013 Aug; 139(5):054703. PubMed ID: 23927277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular insights into the electric double layers of ionic liquids on Au(100) electrodes.
    Sha M; Dou Q; Luo F; Zhu G; Wu G
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12556-65. PubMed ID: 25046476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coarse-grained simulations of an ionic liquid-based capacitor: I. Density, ion size, and valency effects.
    Breitsprecher K; Košovan P; Holm C
    J Phys Condens Matter; 2014 Jul; 26(28):284108. PubMed ID: 24919407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capacitive energy storage in single-file pores: Exactly solvable models and simulations.
    Verkholyak T; Kuzmak A; Kondrat S
    J Chem Phys; 2021 Nov; 155(17):174112. PubMed ID: 34742202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-Faradaic Energy Storage by Room Temperature Ionic Liquids in Nanoporous Electrodes.
    Vatamanu J; Vatamanu M; Bedrov D
    ACS Nano; 2015 Jun; 9(6):5999-6017. PubMed ID: 26038979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical double layers and differential capacitance in molten salts from density functional theory.
    Frischknecht AL; Halligan DO; Parks ML
    J Chem Phys; 2014 Aug; 141(5):054708. PubMed ID: 25106601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential capacitance of ionic liquids according to lattice-gas mean-field model with nearest-neighbor interactions.
    Downing R; Berntson BK; Bossa GV; May S
    J Chem Phys; 2018 Nov; 149(20):204703. PubMed ID: 30501261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and thermodynamic properties of the electrical double layer in slit nanopores: A Monte Carlo study.
    Lamperski S
    J Chem Phys; 2020 Oct; 153(13):134703. PubMed ID: 33032423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionic structure in liquids confined by dielectric interfaces.
    Jing Y; Jadhao V; Zwanikken JW; Olvera de la Cruz M
    J Chem Phys; 2015 Nov; 143(19):194508. PubMed ID: 26590543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slow and fast capacitive process taking place at the ionic liquid/electrode interface.
    Roling B; Drüschler M; Huber B
    Faraday Discuss; 2012; 154():303-11; discussion 313-33, 465-71. PubMed ID: 22455027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lattice Model of an Ionic Liquid at an Electrified Interface.
    Girotto M; Colla T; Dos Santos AP; Levin Y
    J Phys Chem B; 2017 Jul; 121(26):6408-6415. PubMed ID: 28590756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.