BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 30307362)

  • 1. Machine and deep learning for sport-specific movement recognition: a systematic review of model development and performance.
    Cust EE; Sweeting AJ; Ball K; Robertson S
    J Sports Sci; 2019 Mar; 37(5):568-600. PubMed ID: 30307362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring Hitting Load in Tennis Using Inertial Sensors and Machine Learning.
    Whiteside D; Cant O; Connolly M; Reid M
    Int J Sports Physiol Perform; 2017 Oct; 12(9):1212-1217. PubMed ID: 28182523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Use of Wearable Microsensors to Quantify Sport-Specific Movements.
    Chambers R; Gabbett TJ; Cole MH; Beard A
    Sports Med; 2015 Jul; 45(7):1065-81. PubMed ID: 25834998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning and Deep Neural Network Architectures for 3D Motion Capture Datasets.
    Boyle A; Ross GB; Graham RB
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4827-4830. PubMed ID: 33019071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IMU-to-Segment Assignment and Orientation Alignment for the Lower Body Using Deep Learning.
    Zimmermann T; Taetz B; Bleser G
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29351262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From the Laboratory to the Field: IMU-Based Shot and Pass Detection in Football Training and Game Scenarios Using Deep Learning.
    Stoeve M; Schuldhaus D; Gamp A; Zwick C; Eskofier BM
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33924985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning algorithms based on signals from a single wearable inertial sensor can detect surface- and age-related differences in walking.
    Hu B; Dixon PC; Jacobs JV; Dennerlein JT; Schiffman JM
    J Biomech; 2018 Apr; 71():37-42. PubMed ID: 29452755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cricket fast bowling detection in a training setting using an inertial measurement unit and machine learning.
    McGrath JW; Neville J; Stewart T; Cronin J
    J Sports Sci; 2019 Jun; 37(11):1220-1226. PubMed ID: 30543315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Cell Phenotype Classification Using Deep Convolutional Neural Networks.
    Dürr O; Sick B
    J Biomol Screen; 2016 Oct; 21(9):998-1003. PubMed ID: 26950929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on motion recognition based on multi-dimensional sensing data and deep learning algorithms.
    Qiu JG; Li Y; Liu HQ; Lin S; Pang L; Sun G; Song YZ
    Math Biosci Eng; 2023 Jul; 20(8):14578-14595. PubMed ID: 37679149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Manifold Learning Combined With Convolutional Neural Networks for Action Recognition.
    Chen X; Weng J; Lu W; Xu J; Weng J
    IEEE Trans Neural Netw Learn Syst; 2018 Sep; 29(9):3938-3952. PubMed ID: 28922128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network.
    Steven Eyobu O; Han DS
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of Knee Joint Forces in Sport Movements Using Wearable Sensors and Machine Learning.
    Stetter BJ; Ringhof S; Krafft FC; Sell S; Stein T
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31450664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic Assessment of Functional Movement Screening Exercises with Deep Learning Architectures.
    Spilz A; Munz M
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tests examining skill outcomes in sport: a systematic review of measurement properties and feasibility.
    Robertson SJ; Burnett AF; Cochrane J
    Sports Med; 2014 Apr; 44(4):501-18. PubMed ID: 24293244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of machine learning classifiers for differentiating level and sport using movement data.
    Ross GB; Clouthier AL; Boyle A; Fischer SL; Graham RB
    J Sports Sci; 2022 Oct; 40(19):2166-2172. PubMed ID: 36415053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classifying Goliath Grouper (
    Brewster LR; Ibrahim AK; DeGroot BC; Ostendorf TJ; Zhuang H; Chérubin LM; Ajemian MJ
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feature-Free Activity Classification of Inertial Sensor Data With Machine Vision Techniques: Method, Development, and Evaluation.
    Dominguez Veiga JJ; O'Reilly M; Whelan D; Caulfield B; Ward TE
    JMIR Mhealth Uhealth; 2017 Aug; 5(8):e115. PubMed ID: 28778851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The path to international medals: A supervised machine learning approach to explore the impact of coach-led sport-specific and non-specific practice.
    Barth M; Güllich A; Raschner C; Emrich E
    PLoS One; 2020; 15(9):e0239378. PubMed ID: 32976547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.