These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 30307709)

  • 1. 3D 3C-SiC/Graphene Hybrid Nanolaminate Films for High-Performance Supercapacitors.
    Heuser S; Yang N; Hof F; Schulte A; Schönherr H; Jiang X
    Small; 2018 Nov; 14(45):e1801857. PubMed ID: 30307709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene/3C-SiC Hybrid Nanolaminate.
    Zhuang H; Yang B; Heuser S; Huang N; Fu H; Jiang X
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28508-17. PubMed ID: 26650041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical properties and applications of nanocrystalline, microcrystalline, and epitaxial cubic silicon carbide films.
    Zhuang H; Yang N; Zhang L; Fuchs R; Jiang X
    ACS Appl Mater Interfaces; 2015 May; 7(20):10886-95. PubMed ID: 25939808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemistry of nanocrystalline 3C silicon carbide films.
    Yang N; Zhuang H; Hoffmann R; Smirnov W; Hees J; Jiang X; Nebel CE
    Chemistry; 2012 May; 18(21):6514-9. PubMed ID: 22504931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-high energy density supercapacitors using a nickel phosphide/nickel/titanium carbide nanocomposite capacitor electrode.
    Xu J; Yang N; Yu S; Schulte A; Schönherr H; Jiang X
    Nanoscale; 2020 Jul; 12(25):13618-13625. PubMed ID: 32558859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Packing Density Unidirectional Arrays of Vertically Aligned Graphene with Enhanced Areal Capacitance for High-Power Micro-Supercapacitors.
    Zheng S; Li Z; Wu ZS; Dong Y; Zhou F; Wang S; Fu Q; Sun C; Guo L; Bao X
    ACS Nano; 2017 Apr; 11(4):4009-4016. PubMed ID: 28333440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vertically Aligned Graphene-Carbon Fiber Hybrid Electrodes with Superlong Cycling Stability for Flexible Supercapacitors.
    Cherusseri J; Sambath Kumar K; Pandey D; Barrios E; Thomas J
    Small; 2019 Oct; 15(44):e1902606. PubMed ID: 31512364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional Expanded Graphene-Metal Oxide Film via Solid-State Microwave Irradiation for Aqueous Asymmetric Supercapacitors.
    Yang M; Lee KG; Lee SJ; Lee SB; Han YK; Choi BG
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22364-71. PubMed ID: 26387450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intertwined nanocarbon and manganese oxide hybrid foam for high-energy supercapacitors.
    Wang W; Guo S; Bozhilov KN; Yan D; Ozkan M; Ozkan CS
    Small; 2013 Nov; 9(21):3714-21. PubMed ID: 23650047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible Nitrogen Doped SiC Nanoarray for Ultrafast Capacitive Energy Storage.
    Chen Y; Zhang X; Xie Z
    ACS Nano; 2015 Aug; 9(8):8054-63. PubMed ID: 26259167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultracompressible, high-rate supercapacitors from graphene-coated carbon nanotube aerogels.
    Wilson E; Islam MF
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5612-8. PubMed ID: 25699583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Dimensional SiC/Holey-Graphene/Holey-MnO
    Chen Y; Zhang X; Xue W; Xie Z
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32514-32525. PubMed ID: 32578976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate Engineered Interconnected Graphene Electrodes with Ultrahigh Energy and Power Densities for Energy Storage Applications.
    Chaichi A; Wang Y; Gartia MR
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21235-21245. PubMed ID: 29856205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films.
    Xu Y; Lin Z; Huang X; Liu Y; Huang Y; Duan X
    ACS Nano; 2013 May; 7(5):4042-9. PubMed ID: 23550832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance supercabatteries using graphite@diamond nano-needle capacitor electrodes and redox electrolytes.
    Yu S; Sankaran KJ; Korneychuk S; Verbeeck J; Haenen K; Jiang X; Yang N
    Nanoscale; 2019 Oct; 11(38):17939-17946. PubMed ID: 31553006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Approach for High-Voltage Electrical Double-Layer Capacitors Using Vertical Graphene Nanowalls with and without Nitrogen Doping.
    Chi YW; Hu CC; Shen HH; Huang KP
    Nano Lett; 2016 Sep; 16(9):5719-27. PubMed ID: 27548051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diamond Supercapacitors: Towards Durable, Safe, and Biocompatible Aqueous-Based Energy Storage.
    Chambers A; Prawer S; Ahnood A; Zhan H
    Front Chem; 2022; 10():924127. PubMed ID: 35668830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic-Induced Assembly of Graphene-Encapsulated Carbon@Nickel-Aluminum Layered Double Hydroxide Core-Shell Spheres Hybrid Structure for High-Energy and High-Power-Density Asymmetric Supercapacitor.
    Wu S; Hui KS; Hui KN; Kim KH
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1395-1406. PubMed ID: 27936540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.
    Cheng Q; Tang J; Ma J; Zhang H; Shinya N; Qin LC
    Phys Chem Chem Phys; 2011 Oct; 13(39):17615-24. PubMed ID: 21887427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast growth of carbon nanotubes on graphene for capacitive energy storage.
    Li Z; Yang B; Su Y; Wang H; Groeper J
    Nanotechnology; 2016 Jan; 27(2):025401. PubMed ID: 26630480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.