These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 30307851)

  • 1. Multi-Wavelength Photoplethysmography Enabling Continuous Blood Pressure Measurement With Compact Wearable Electronics.
    Liu J; Yan BP; Zhang YT; Ding XR; Su P; Zhao N
    IEEE Trans Biomed Eng; 2019 Jun; 66(6):1514-1525. PubMed ID: 30307851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PCA-Based Multi-Wavelength Photoplethysmography Algorithm for Cuffless Blood Pressure Measurement on Elderly Subjects.
    Liu J; Qiu S; Luo N; Lau SK; Yu H; Kwok T; Zhang YT; Zhao N
    IEEE J Biomed Health Inform; 2021 Mar; 25(3):663-673. PubMed ID: 32750946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noninvasive Cuffless Blood Pressure Estimation Using Pulse Transit Time and Impedance Plethysmography.
    Huynh TH; Jafari R; Chung WY
    IEEE Trans Biomed Eng; 2019 Apr; 66(4):967-976. PubMed ID: 30130167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing systemic vascular resistance using arteriolar pulse transit time based on multi-wavelength photoplethysmography.
    Lu Y; Yu Z; Liu J; An Q; Chen C; Li Y; Wang Y
    Physiol Meas; 2022 Jul; 43(7):. PubMed ID: 35697023
    [No Abstract]   [Full Text] [Related]  

  • 5. A preliminary study on multi-wavelength PPG based pulse transit time detection for cuffless blood pressure measurement.
    Jing Liu ; Yuan-Ting Zhang ; Xiao-Rong Ding ; Wen-Xuan Dai ; Ni Zhao
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():615-618. PubMed ID: 28324936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-source PPG-based local pulse wave velocity measurement: a potential cuffless blood pressure estimation technique.
    Nabeel PM; Jayaraj J; Mohanasankar S
    Physiol Meas; 2017 Nov; 38(12):2122-2140. PubMed ID: 29058686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enabling Wearable Pulse Transit Time-Based Blood Pressure Estimation for Medically Underserved Areas and Health Equity: Comprehensive Evaluation Study.
    Ganti V; Carek AM; Jung H; Srivatsa AV; Cherry D; Johnson LN; Inan OT
    JMIR Mhealth Uhealth; 2021 Aug; 9(8):e27466. PubMed ID: 34338646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cuff-less and continuous blood pressure measurement based on pulse transit time from carotid and toe photoplethysmograms.
    Zuhair Sameen A; Jaafar R; Zahedi E; Kok Beng G
    J Med Eng Technol; 2022 Oct; 46(7):567-589. PubMed ID: 35801952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of continuous blood pressure estimation based on pulse transit time, heart rate and photoplethysmography-derived hemodynamic covariates.
    Feng J; Huang Z; Zhou C; Ye X
    Australas Phys Eng Sci Med; 2018 Jun; 41(2):403-413. PubMed ID: 29633173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of cuff inflation and deflation on pulse transit time measured from ECG and multi-wavelength PPG.
    Liu J; Li Y; Ding XR; Dai WX; Zhang YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5973-6. PubMed ID: 26737652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wearable Piezoelectric-Based System for Continuous Beat-to-Beat Blood Pressure Measurement.
    Wang TW; Lin SF
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32033495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio.
    Ding XR; Zhang YT; Liu J; Dai WX; Tsang HK
    IEEE Trans Biomed Eng; 2016 May; 63(5):964-972. PubMed ID: 26415147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and validation of dual-point time-differentiated photoplethysmogram (2PPG) wearable for cuffless blood pressure estimation.
    Wong KFM; Huang W; Ee DYH; Ng EYK
    Comput Methods Programs Biomed; 2024 Aug; 253():108251. PubMed ID: 38824806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel blood pressure estimation method using single photoplethysmography feature.
    Yang Chen ; Shuo Cheng ; Tong Wang ; Ting Ma
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1712-1715. PubMed ID: 29060216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Literature Review on Current and Proposed Technologies of Noninvasive Blood Pressure Measurement.
    Mukherjee R; Ghosh S; Gupta B; Chakravarty T
    Telemed J E Health; 2018 Mar; 24(3):185-193. PubMed ID: 28783442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of transit time-based models in wearable central aortic blood pressure estimation.
    Fierro G; Armentano R; Silveira F
    Biomed Phys Eng Express; 2020 Mar; 6(3):035006. PubMed ID: 33438651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploration and validation of alternate sensing methods for wearable continuous pulse transit time measurement using optical and bioimpedance modalities.
    Ibrahim B; Nathan V; Jafari R
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2051-2055. PubMed ID: 29060300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals.
    Zhang Q; Zhou D; Zeng X
    Biomed Eng Online; 2017 Feb; 16(1):23. PubMed ID: 28166774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intelligent Bio-Impedance System for Personalized Continuous Blood Pressure Measurement.
    Wang TW; Syu JY; Chu HW; Sung YL; Chou L; Escott E; Escott O; Lin TT; Lin SF
    Biosensors (Basel); 2022 Feb; 12(3):. PubMed ID: 35323420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wearable Cuff-Less Blood Pressure Estimation at Home via Pulse Transit Time.
    Ganti VG; Carek AM; Nevius BN; Heller JA; Etemadi M; Inan OT
    IEEE J Biomed Health Inform; 2021 Jun; 25(6):1926-1937. PubMed ID: 32881697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.